Sales Intelligence & Customer Prioritization Workflow

Daily automated sales intelligence workflow for customer prioritization and opportunity identification

Back
Workflow Information

ID: sales_intelligence_workflow

Namespace: default

Version: 1.0

Created: 2025-07-01

Updated: 2025-07-01

Tasks: 16

Quick Actions
Manage Secrets
Inputs
Name Type Required Default
officer_id string Optional OFF_001
analysis_date string Optional 2025-06-25
Outputs
Name Type Source
daily_report object Daily insights email delivery confirmation
dashboard_data object Performance dashboard data
portfolio_analysis object Complete portfolio analysis results
sales_intelligence object AI-generated sales insights and recommendations
customer_priorities object Customer priority scores and rankings
Tasks
get_sales_officer_portfolio
script

Retrieve sales officer's customer portfolio and active deals

Task Outputs: {'name': 'portfolio_data', 'value': 'Sales officer portfolio retrieved'}
get_customer_purchase_history
script

Analyze customer purchase patterns and history

Task Outputs: {'name': 'purchase_histories', 'value': 'Customer purchase histories analyzed'}
get_customer_engagement_metrics
script

Retrieve customer engagement and interaction metrics

Task Outputs: {'name': 'engagement_metrics', 'value': 'Customer engagement metrics retrieved'}
get_market_benchmarks
script

Retrieve industry benchmarks and market data

Task Outputs: {'name': 'market_benchmarks', 'value': 'Market benchmarks retrieved'}
get_opportunity_indicators
script

Identify buying signals and expansion opportunities

Task Outputs: {'name': 'opportunity_indicators', 'value': 'Opportunity indicators identified'}
calculate_customer_priority_score
script

AI-powered customer prioritization scoring

Task Outputs: {'name': 'priority_scores', 'value': 'Customer priority scores calculated'}
identify_upsell_opportunities
script

AI identification of upselling and cross-selling opportunities

Task Outputs: {'name': 'upsell_opportunities', 'value': 'Upsell opportunities identified'}
detect_churn_risk
script

AI-powered churn risk detection and analysis

Task Outputs: {'name': 'churn_risks', 'value': 'Churn risks detected and analyzed'}
generate_sales_insights
script

AI-generated actionable sales insights and recommendations

Task Outputs: {'name': 'sales_insights', 'value': 'Sales insights generated'}
check_high_priority_customers
script

Determine if high priority customers exist for specialized handling

Task Outputs: {'name': 'priority_check_result', 'value': 'High priority customer check completed'}
create_customer_priority_list
script

Generate prioritized customer list for high priority customers

Task Outputs: {'name': 'priority_list', 'value': 'Customer priority list created'}
generate_sales_recommendations
script

Create specific actionable recommendations for high priority customers

Task Outputs: {'name': 'sales_recommendations', 'value': 'Sales recommendations generated'}
update_opportunity_scores
script

Update opportunity scores in CRM/Dynamics systems

Task Outputs: {'name': 'opportunity_updates', 'value': 'Opportunity scores updated'}
create_performance_dashboard
script

Generate comprehensive sales performance dashboard

Task Outputs: {'name': 'performance_dashboard', 'value': 'Performance dashboard created'}
log_no_high_priority
script

Log when no high priority customers are identified

Task Outputs: {'name': 'no_priority_log', 'value': 'No high priority customers logged'}
send_daily_insights_email
script

Send daily intelligence report to sales officer

Task Outputs: {'name': 'daily_email_sent', 'value': 'Daily insights email sent'}
Triggers
Scheduled Trigger: Daily Sales Intelligence
Manual Trigger: Manual Intelligence Analysis
Webhook Trigger: Sales Officer Login Trigger
POST /webhook/officer-login
YAML Source
id: sales_intelligence_workflow
name: Sales Intelligence & Customer Prioritization Workflow
tasks:
- id: get_sales_officer_portfolio
  name: Get Sales Officer Portfolio
  type: script
  script: "#!/usr/bin/env python3\nimport json\nfrom datetime import datetime\n\n\
    print(\"\U0001F465 Retrieving sales officer portfolio...\")\n\nofficer_id = \"\
    OFF_001\"\n\n# Mock sales officer portfolio\nportfolio_data = {\n    \"officer_id\"\
    : officer_id,\n    \"officer_name\": \"Sarah Johnson\",\n    \"portfolio_summary\"\
    : {\n        \"total_customers\": 45,\n        \"active_deals\": 15,\n       \
    \ \"pipeline_value\": 850000.00,\n        \"deals_by_stage\": {\n            \"\
    qualified\": 5,\n            \"proposal\": 4,\n            \"negotiation\": 3,\n\
    \            \"closing\": 3\n        }\n    },\n    \"customer_list\": [\n   \
    \     {\n            \"customer_id\": \"CUST_001\",\n            \"customer_name\"\
    : \"TechCorp Industries\",\n            \"industry\": \"Technology\",\n      \
    \      \"company_size\": \"500-1000\",\n            \"current_deals\": [\n   \
    \             {\n                    \"deal_id\": \"DEAL_2025_001234\",\n    \
    \                \"deal_value\": 125000.00,\n                    \"stage\": \"\
    negotiation\",\n                    \"probability\": 0.75\n                }\n\
    \            ],\n            \"last_contact_date\": \"2025-06-20T14:30:00Z\",\n\
    \            \"relationship_strength\": \"strong\"\n        },\n        {\n  \
    \          \"customer_id\": \"CUST_002\",\n            \"customer_name\": \"InnovateAI\
    \ Corp\",\n            \"industry\": \"Artificial Intelligence\",\n          \
    \  \"company_size\": \"200-500\",\n            \"current_deals\": [\n        \
    \        {\n                    \"deal_id\": \"DEAL_2025_001235\",\n         \
    \           \"deal_value\": 95000.00,\n                    \"stage\": \"proposal\"\
    ,\n                    \"probability\": 0.60\n                }\n            ],\n\
    \            \"last_contact_date\": \"2025-06-22T10:15:00Z\",\n            \"\
    relationship_strength\": \"medium\"\n        },\n        {\n            \"customer_id\"\
    : \"CUST_003\",\n            \"customer_name\": \"DataSystems Corp\",\n      \
    \      \"industry\": \"Data Analytics\",\n            \"company_size\": \"100-200\"\
    ,\n            \"current_deals\": [],\n            \"last_contact_date\": \"2025-06-10T16:45:00Z\"\
    ,\n            \"relationship_strength\": \"weak\"\n        }\n    ]\n}\n\nprint(f\"\
    \u2705 Portfolio retrieved for {portfolio_data['officer_name']}\")\nprint(f\"\
    \   Total customers: {portfolio_data['portfolio_summary']['total_customers']}\"\
    )\nprint(f\"   Active deals: {portfolio_data['portfolio_summary']['active_deals']}\"\
    )\nprint(f\"   Pipeline value: ${portfolio_data['portfolio_summary']['pipeline_value']:,.2f}\"\
    )\n\nprint(f\"__OUTPUTS__ {json.dumps(portfolio_data)}\")\n"
  outputs:
  - name: portfolio_data
    value: Sales officer portfolio retrieved
  packages:
  - json==2.0.9
  - datetime
  description: Retrieve sales officer's customer portfolio and active deals
- id: get_customer_purchase_history
  name: Get Customer Purchase History
  type: script
  script: "#!/usr/bin/env python3\nimport json\n\nprint(\"\U0001F4CA Analyzing customer\
    \ purchase history...\")\n\n# Mock customer purchase history\npurchase_histories\
    \ = [\n    {\n        \"customer_id\": \"CUST_001\",\n        \"customer_name\"\
    : \"TechCorp Industries\",\n        \"purchase_summary\": {\n            \"total_revenue_12m\"\
    : 285000.00,\n            \"order_frequency\": \"quarterly\",\n            \"\
    average_order_value\": 71250.00,\n            \"orders_count\": 4,\n         \
    \   \"growth_trend\": \"increasing\",\n            \"seasonal_pattern\": \"q4_peak\"\
    \n        },\n        \"product_categories\": [\n            {\n             \
    \   \"category\": \"enterprise_software\",\n                \"spend\": 200000.00,\n\
    \                \"percentage\": 0.70\n            },\n            {\n       \
    \         \"category\": \"professional_services\",\n                \"spend\"\
    : 85000.00,\n                \"percentage\": 0.30\n            }\n        ],\n\
    \        \"last_purchase\": \"2025-05-15T00:00:00Z\",\n        \"payment_behavior\"\
    : \"on_time\",\n        \"contract_type\": \"annual\"\n    },\n    {\n       \
    \ \"customer_id\": \"CUST_002\",\n        \"customer_name\": \"InnovateAI Corp\"\
    ,\n        \"purchase_summary\": {\n            \"total_revenue_12m\": 165000.00,\n\
    \            \"order_frequency\": \"bi_annual\",\n            \"average_order_value\"\
    : 82500.00,\n            \"orders_count\": 2,\n            \"growth_trend\": \"\
    stable\",\n            \"seasonal_pattern\": \"h1_peak\"\n        },\n       \
    \ \"product_categories\": [\n            {\n                \"category\": \"ai_analytics\"\
    ,\n                \"spend\": 120000.00,\n                \"percentage\": 0.73\n\
    \            },\n            {\n                \"category\": \"data_integration\"\
    ,\n                \"spend\": 45000.00,\n                \"percentage\": 0.27\n\
    \            }\n        ],\n        \"last_purchase\": \"2025-01-20T00:00:00Z\"\
    ,\n        \"payment_behavior\": \"on_time\",\n        \"contract_type\": \"multi_year\"\
    \n    },\n    {\n        \"customer_id\": \"CUST_003\",\n        \"customer_name\"\
    : \"DataSystems Corp\",\n        \"purchase_summary\": {\n            \"total_revenue_12m\"\
    : 45000.00,\n            \"order_frequency\": \"annual\",\n            \"average_order_value\"\
    : 45000.00,\n            \"orders_count\": 1,\n            \"growth_trend\": \"\
    declining\",\n            \"seasonal_pattern\": \"q1_only\"\n        },\n    \
    \    \"last_purchase\": \"2025-01-10T00:00:00Z\",\n        \"payment_behavior\"\
    : \"slow_pay\",\n        \"contract_type\": \"project_based\"\n    }\n]\n\ntotal_revenue\
    \ = sum(h['purchase_summary']['total_revenue_12m'] for h in purchase_histories)\n\
    print(f\"\u2705 Analyzed purchase history for {len(purchase_histories)} customers\"\
    )\nprint(f\"   Total portfolio revenue (12m): ${total_revenue:,.2f}\")\n\nfor\
    \ history in purchase_histories:\n    print(f\"   \u2022 {history['customer_name']}:\
    \ ${history['purchase_summary']['total_revenue_12m']:,.0f} ({history['purchase_summary']['growth_trend']})\"\
    )\n\nprint(f\"__OUTPUTS__ {json.dumps(purchase_histories)}\")\n"
  outputs:
  - name: purchase_histories
    value: Customer purchase histories analyzed
  packages:
  - json==2.0.9
  depends_on:
  - get_sales_officer_portfolio
  description: Analyze customer purchase patterns and history
- id: get_customer_engagement_metrics
  name: Get Customer Engagement Metrics
  type: script
  script: "#!/usr/bin/env python3\nimport json\n\nprint(\"\U0001F4C8 Retrieving customer\
    \ engagement metrics...\")\n\n# Mock engagement metrics\nengagement_metrics =\
    \ [\n    {\n        \"customer_id\": \"CUST_001\",\n        \"customer_name\"\
    : \"TechCorp Industries\",\n        \"engagement_score\": 0.87,\n        \"email_metrics\"\
    : {\n            \"open_rate\": 0.85,\n            \"click_rate\": 0.32,\n   \
    \         \"response_rate\": 0.78\n        },\n        \"call_metrics\": {\n \
    \           \"answer_rate\": 0.90,\n            \"callback_rate\": 0.85,\n   \
    \         \"avg_call_duration\": 25.5\n        },\n        \"meeting_metrics\"\
    : {\n            \"acceptance_rate\": 0.92,\n            \"attendance_rate\":\
    \ 0.95,\n            \"reschedule_rate\": 0.08\n        },\n        \"digital_engagement\"\
    : {\n            \"website_visits_month\": 15,\n            \"portal_logins_month\"\
    : 22,\n            \"support_tickets_month\": 2,\n            \"content_downloads\"\
    : 8\n        },\n        \"engagement_trend\": \"increasing\",\n        \"last_engagement\"\
    : \"2025-06-24T16:30:00Z\"\n    },\n    {\n        \"customer_id\": \"CUST_002\"\
    ,\n        \"customer_name\": \"InnovateAI Corp\",\n        \"engagement_score\"\
    : 0.72,\n        \"email_metrics\": {\n            \"open_rate\": 0.68,\n    \
    \        \"click_rate\": 0.18,\n            \"response_rate\": 0.55\n        },\n\
    \        \"call_metrics\": {\n            \"answer_rate\": 0.75,\n           \
    \ \"callback_rate\": 0.60,\n            \"avg_call_duration\": 18.2\n        },\n\
    \        \"meeting_metrics\": {\n            \"acceptance_rate\": 0.80,\n    \
    \        \"attendance_rate\": 0.88,\n            \"reschedule_rate\": 0.15\n \
    \       },\n        \"digital_engagement\": {\n            \"website_visits_month\"\
    : 8,\n            \"portal_logins_month\": 12,\n            \"support_tickets_month\"\
    : 1,\n            \"content_downloads\": 3\n        },\n        \"engagement_trend\"\
    : \"stable\"\n    },\n    {\n        \"customer_id\": \"CUST_003\",\n        \"\
    customer_name\": \"DataSystems Corp\",\n        \"engagement_score\": 0.34,\n\
    \        \"email_metrics\": {\n            \"open_rate\": 0.25,\n            \"\
    click_rate\": 0.05,\n            \"response_rate\": 0.15\n        },\n       \
    \ \"call_metrics\": {\n            \"answer_rate\": 0.40,\n            \"callback_rate\"\
    : 0.20,\n            \"avg_call_duration\": 8.5\n        },\n        \"meeting_metrics\"\
    : {\n            \"acceptance_rate\": 0.30,\n            \"attendance_rate\":\
    \ 0.50,\n            \"reschedule_rate\": 0.40\n        },\n        \"digital_engagement\"\
    : {\n            \"website_visits_month\": 1,\n            \"portal_logins_month\"\
    : 2,\n            \"support_tickets_month\": 8,\n            \"content_downloads\"\
    : 0\n        },\n        \"engagement_trend\": \"declining\"\n    }\n]\n\navg_engagement\
    \ = sum(m['engagement_score'] for m in engagement_metrics) / len(engagement_metrics)\n\
    print(f\"\u2705 Retrieved engagement metrics for {len(engagement_metrics)} customers\"\
    )\nprint(f\"   Average engagement score: {avg_engagement:.2f}\")\n\nfor metric\
    \ in engagement_metrics:\n    print(f\"   \u2022 {metric['customer_name']}: {metric['engagement_score']:.2f}\
    \ ({metric['engagement_trend']})\")\n\nprint(f\"__OUTPUTS__ {json.dumps(engagement_metrics)}\"\
    )\n"
  outputs:
  - name: engagement_metrics
    value: Customer engagement metrics retrieved
  packages:
  - json==2.0.9
  depends_on:
  - get_customer_purchase_history
  description: Retrieve customer engagement and interaction metrics
- id: get_market_benchmarks
  name: Get Market Benchmarks
  type: script
  script: "#!/usr/bin/env python3\nimport json\n\nprint(\"\U0001F4CA Retrieving market\
    \ benchmarks...\")\n\n# Mock market benchmarks\nmarket_benchmarks = {\n    \"\
    industry_averages\": {\n        \"technology\": {\n            \"avg_deal_size\"\
    : 78500.00,\n            \"avg_sales_cycle\": 52,\n            \"conversion_rate\"\
    : 0.62,\n            \"customer_lifetime_value\": 285000.00,\n            \"churn_rate\"\
    : 0.08,\n            \"upsell_rate\": 0.35\n        },\n        \"artificial_intelligence\"\
    : {\n            \"avg_deal_size\": 95000.00,\n            \"avg_sales_cycle\"\
    : 48,\n            \"conversion_rate\": 0.58,\n            \"customer_lifetime_value\"\
    : 325000.00,\n            \"churn_rate\": 0.12,\n            \"upsell_rate\":\
    \ 0.42\n        },\n        \"data_analytics\": {\n            \"avg_deal_size\"\
    : 65000.00,\n            \"avg_sales_cycle\": 38,\n            \"conversion_rate\"\
    : 0.55,\n            \"customer_lifetime_value\": 195000.00,\n            \"churn_rate\"\
    : 0.15,\n            \"upsell_rate\": 0.28\n        }\n    },\n    \"market_conditions\"\
    : {\n        \"overall_growth_rate\": 0.18,\n        \"competitive_intensity\"\
    : 0.75,\n        \"market_maturity\": \"growth_stage\",\n        \"pricing_pressure\"\
    : \"moderate\",\n        \"innovation_rate\": \"high\"\n    },\n    \"regional_factors\"\
    : {\n        \"north_america\": {\n            \"market_size\": \"2.8B\",\n  \
    \          \"growth_rate\": 0.22,\n            \"competitive_density\": \"high\"\
    \n        }\n    },\n    \"seasonal_trends\": {\n        \"q1\": {\"activity_multiplier\"\
    : 0.85, \"close_rate\": 0.58},\n        \"q2\": {\"activity_multiplier\": 1.05,\
    \ \"close_rate\": 0.65},\n        \"q3\": {\"activity_multiplier\": 0.95, \"close_rate\"\
    : 0.62},\n        \"q4\": {\"activity_multiplier\": 1.15, \"close_rate\": 0.72}\n\
    \    }\n}\n\nprint(f\"\u2705 Market benchmarks retrieved\")\nprint(f\"   Overall\
    \ market growth: {market_benchmarks['market_conditions']['overall_growth_rate']*100:.1f}%\"\
    )\nprint(f\"   Competitive intensity: {market_benchmarks['market_conditions']['competitive_intensity']*100:.0f}%\"\
    )\n\nfor industry, data in market_benchmarks['industry_averages'].items():\n \
    \   print(f\"   \u2022 {industry}: ${data['avg_deal_size']:,.0f} avg deal, {data['conversion_rate']*100:.0f}%\
    \ conversion\")\n\nprint(f\"__OUTPUTS__ {json.dumps(market_benchmarks)}\")\n"
  outputs:
  - name: market_benchmarks
    value: Market benchmarks retrieved
  packages:
  - json==2.0.9
  depends_on:
  - get_customer_engagement_metrics
  description: Retrieve industry benchmarks and market data
- id: get_opportunity_indicators
  name: Get Opportunity Indicators
  type: script
  script: "#!/usr/bin/env python3\nimport json\n\nprint(\"\U0001F50D Identifying opportunity\
    \ indicators...\")\n\n# Mock opportunity indicators\nopportunity_indicators =\
    \ [\n    {\n        \"customer_id\": \"CUST_001\",\n        \"customer_name\"\
    : \"TechCorp Industries\",\n        \"buying_signals\": [\n            {\n   \
    \             \"signal\": \"increased_website_activity\",\n                \"\
    strength\": \"strong\",\n                \"detected_date\": \"2025-06-20T00:00:00Z\"\
    ,\n                \"description\": \"15 website visits this month, 5x normal\"\
    \n            },\n            {\n                \"signal\": \"pricing_page_visits\"\
    ,\n                \"strength\": \"medium\",\n                \"detected_date\"\
    : \"2025-06-22T00:00:00Z\",\n                \"description\": \"Multiple pricing\
    \ page visits\"\n            },\n            {\n                \"signal\": \"\
    competitor_research\",\n                \"strength\": \"high\",\n            \
    \    \"detected_date\": \"2025-06-21T00:00:00Z\",\n                \"description\"\
    : \"Downloaded competitor comparison guide\"\n            }\n        ],\n    \
    \    \"expansion_opportunities\": [\n            {\n                \"opportunity_type\"\
    : \"module_expansion\",\n                \"potential_value\": 45000.00,\n    \
    \            \"probability\": 0.75,\n                \"timeline\": \"Q3_2025\"\
    ,\n                \"description\": \"Analytics module for existing CRM\"\n  \
    \          },\n            {\n                \"opportunity_type\": \"user_expansion\"\
    ,\n                \"potential_value\": 35000.00,\n                \"probability\"\
    : 0.60,\n                \"timeline\": \"Q4_2025\",\n                \"description\"\
    : \"Additional 100 user licenses\"\n            }\n        ],\n        \"pain_points\"\
    : [\n            \"manual_reporting_processes\",\n            \"data_integration_challenges\"\
    ,\n            \"scalability_concerns\"\n        ]\n    },\n    {\n        \"\
    customer_id\": \"CUST_002\",\n        \"customer_name\": \"InnovateAI Corp\",\n\
    \        \"buying_signals\": [\n            {\n                \"signal\": \"\
    demo_request\",\n                \"strength\": \"very_strong\",\n            \
    \    \"detected_date\": \"2025-06-23T00:00:00Z\",\n                \"description\"\
    : \"Requested advanced features demo\"\n            },\n            {\n      \
    \          \"signal\": \"technical_questions\",\n                \"strength\"\
    : \"strong\",\n                \"detected_date\": \"2025-06-24T00:00:00Z\",\n\
    \                \"description\": \"Asked detailed integration questions\"\n \
    \           }\n        ],\n        \"expansion_opportunities\": [\n          \
    \  {\n                \"opportunity_type\": \"premium_upgrade\",\n           \
    \     \"potential_value\": 65000.00,\n                \"probability\": 0.85,\n\
    \                \"timeline\": \"Q2_2025\",\n                \"description\":\
    \ \"Upgrade to enterprise AI features\"\n            }\n        ],\n        \"\
    pain_points\": [\n            \"ai_model_performance\",\n            \"real_time_processing\"\
    ,\n            \"custom_algorithm_needs\"\n        ]\n    },\n    {\n        \"\
    customer_id\": \"CUST_003\",\n        \"customer_name\": \"DataSystems Corp\"\
    ,\n        \"buying_signals\": [],\n        \"expansion_opportunities\": [],\n\
    \        \"pain_points\": [\n            \"budget_constraints\",\n           \
    \ \"technical_complexity\",\n            \"change_resistance\"\n        ],\n \
    \       \"churn_indicators\": [\n            {\n                \"indicator\"\
    : \"support_ticket_increase\",\n                \"severity\": \"high\",\n    \
    \            \"description\": \"8 support tickets this month vs 1 average\"\n\
    \            },\n            {\n                \"indicator\": \"low_engagement\"\
    ,\n                \"severity\": \"medium\",\n                \"description\"\
    : \"Declining portal usage and response rates\"\n            }\n        ]\n  \
    \  }\n]\n\ntotal_opportunities = 0\ntotal_value = 0\n\nfor customer in opportunity_indicators:\n\
    \    opportunities = len(customer.get('expansion_opportunities', []))\n    total_opportunities\
    \ += opportunities\n    for opp in customer.get('expansion_opportunities', []):\n\
    \        total_value += opp['potential_value']\n\nprint(f\"\u2705 Analyzed opportunity\
    \ indicators\")\nprint(f\"   Total expansion opportunities: {total_opportunities}\"\
    )\nprint(f\"   Total potential value: ${total_value:,.2f}\")\n\nfor customer in\
    \ opportunity_indicators:\n    signals_count = len(customer.get('buying_signals',\
    \ []))\n    opps_count = len(customer.get('expansion_opportunities', []))\n  \
    \  print(f\"   \u2022 {customer['customer_name']}: {signals_count} signals, {opps_count}\
    \ opportunities\")\n\nprint(f\"__OUTPUTS__ {json.dumps(opportunity_indicators)}\"\
    )\n"
  outputs:
  - name: opportunity_indicators
    value: Opportunity indicators identified
  packages:
  - json==2.0.9
  depends_on:
  - get_market_benchmarks
  description: Identify buying signals and expansion opportunities
- id: calculate_customer_priority_score
  name: Calculate Customer Priority Score
  type: script
  script: "#!/usr/bin/env python3\nimport json\n\nprint(\"\U0001F916 Calculating customer\
    \ priority scores...\")\n\n# Mock AI priority scoring\npriority_scores = [\n \
    \   {\n        \"customer_id\": \"CUST_001\",\n        \"customer_name\": \"TechCorp\
    \ Industries\",\n        \"priority_score\": 92.5,\n        \"priority_tier\"\
    : \"HIGH\",\n        \"scoring_breakdown\": {\n            \"revenue_potential\"\
    : 25.0,\n            \"engagement_level\": 22.0,\n            \"buying_signals\"\
    : 20.0,\n            \"relationship_strength\": 15.0,\n            \"expansion_opportunity\"\
    : 10.5\n        },\n        \"confidence_level\": 0.89,\n        \"ranking_factors\"\
    : [\n            \"strong_buying_signals\",\n            \"high_engagement_score\"\
    ,\n            \"multiple_expansion_opportunities\",\n            \"large_revenue_potential\"\
    \n        ],\n        \"recommended_actions\": [\n            \"immediate_outreach\"\
    ,\n            \"executive_engagement\",\n            \"expansion_proposal_preparation\"\
    \n        ]\n    },\n    {\n        \"customer_id\": \"CUST_002\",\n        \"\
    customer_name\": \"InnovateAI Corp\",\n        \"priority_score\": 87.3,\n   \
    \     \"priority_tier\": \"HIGH\",\n        \"scoring_breakdown\": {\n       \
    \     \"revenue_potential\": 20.0,\n            \"engagement_level\": 18.0,\n\
    \            \"buying_signals\": 24.0,\n            \"relationship_strength\"\
    : 15.0,\n            \"expansion_opportunity\": 10.3\n        },\n        \"confidence_level\"\
    : 0.92,\n        \"ranking_factors\": [\n            \"very_strong_buying_signals\"\
    ,\n            \"demo_requested\",\n            \"high_probability_upgrade\",\n\
    \            \"good_payment_history\"\n        ],\n        \"recommended_actions\"\
    : [\n            \"schedule_demo_immediately\",\n            \"prepare_upgrade_proposal\"\
    ,\n            \"technical_team_involvement\"\n        ]\n    },\n    {\n    \
    \    \"customer_id\": \"CUST_003\",\n        \"customer_name\": \"DataSystems\
    \ Corp\",\n        \"priority_score\": 25.8,\n        \"priority_tier\": \"LOW\"\
    ,\n        \"scoring_breakdown\": {\n            \"revenue_potential\": 5.0,\n\
    \            \"engagement_level\": 3.4,\n            \"buying_signals\": 0.0,\n\
    \            \"relationship_strength\": 7.4,\n            \"expansion_opportunity\"\
    : 0.0,\n            \"churn_risk\": -10.0\n        },\n        \"confidence_level\"\
    : 0.78,\n        \"ranking_factors\": [\n            \"high_churn_risk\",\n  \
    \          \"low_engagement\",\n            \"no_expansion_opportunities\",\n\
    \            \"payment_issues\"\n        ],\n        \"recommended_actions\":\
    \ [\n            \"retention_strategy\",\n            \"relationship_rebuilding\"\
    ,\n            \"value_demonstration\"\n        ]\n    }\n]\n\nhigh_priority_count\
    \ = sum(1 for score in priority_scores if score['priority_tier'] == 'HIGH')\n\
    avg_score = sum(score['priority_score'] for score in priority_scores) / len(priority_scores)\n\
    \nprint(f\"\u2705 Calculated priority scores for {len(priority_scores)} customers\"\
    )\nprint(f\"   High priority customers: {high_priority_count}\")\nprint(f\"  \
    \ Average priority score: {avg_score:.1f}\")\n\nfor score in priority_scores:\n\
    \    print(f\"   \u2022 {score['customer_name']}: {score['priority_score']:.1f}\
    \ ({score['priority_tier']})\")\n\nprint(f\"__OUTPUTS__ {json.dumps(priority_scores)}\"\
    )\n"
  outputs:
  - name: priority_scores
    value: Customer priority scores calculated
  packages:
  - json==2.0.9
  depends_on:
  - get_opportunity_indicators
  description: AI-powered customer prioritization scoring
- id: identify_upsell_opportunities
  name: Identify Upsell Opportunities
  type: script
  script: "#!/usr/bin/env python3\nimport json\n\nprint(\"\U0001F4B0 Identifying upsell\
    \ opportunities...\")\n\n# Mock upsell opportunity identification\nupsell_opportunities\
    \ = [\n    {\n        \"customer_id\": \"CUST_001\",\n        \"customer_name\"\
    : \"TechCorp Industries\",\n        \"opportunities\": [\n            {\n    \
    \            \"opportunity_id\": \"UPS_001\",\n                \"opportunity_type\"\
    : \"module_expansion\",\n                \"recommended_product\": \"Advanced Analytics\
    \ Module\",\n                \"current_product\": \"CRM Enterprise\",\n      \
    \          \"potential_revenue\": 45000.00,\n                \"probability_score\"\
    : 0.75,\n                \"confidence_level\": 0.88,\n                \"timeline\"\
    : \"Q3_2025\",\n                \"key_drivers\": [\n                    \"expressed_interest_in_reporting\"\
    ,\n                    \"current_manual_processes\",\n                    \"budget_availability\"\
    \n                ],\n                \"value_proposition\": \"Automate reporting,\
    \ save 15 hours/week\",\n                \"competitive_risk\": \"low\"\n     \
    \       },\n            {\n                \"opportunity_id\": \"UPS_002\",\n\
    \                \"opportunity_type\": \"user_expansion\",\n                \"\
    recommended_product\": \"Additional User Licenses\",\n                \"potential_revenue\"\
    : 35000.00,\n                \"probability_score\": 0.60,\n                \"\
    timeline\": \"Q4_2025\",\n                \"key_drivers\": [\n               \
    \     \"company_growth\",\n                    \"new_department_adoption\"\n \
    \               ]\n            }\n        ],\n        \"total_potential_revenue\"\
    : 80000.00,\n        \"weighted_revenue\": 52500.00\n    },\n    {\n        \"\
    customer_id\": \"CUST_002\",\n        \"customer_name\": \"InnovateAI Corp\",\n\
    \        \"opportunities\": [\n            {\n                \"opportunity_id\"\
    : \"UPS_003\",\n                \"opportunity_type\": \"premium_upgrade\",\n \
    \               \"recommended_product\": \"AI Enterprise Suite\",\n          \
    \      \"current_product\": \"AI Standard\",\n                \"potential_revenue\"\
    : 65000.00,\n                \"probability_score\": 0.85,\n                \"\
    confidence_level\": 0.91,\n                \"timeline\": \"Q2_2025\",\n      \
    \          \"key_drivers\": [\n                    \"demo_requested\",\n     \
    \               \"technical_requirements_match\",\n                    \"budget_approved\"\
    \n                ],\n                \"value_proposition\": \"10x faster processing,\
    \ custom algorithms\",\n                \"competitive_risk\": \"medium\"\n   \
    \         }\n        ],\n        \"total_potential_revenue\": 65000.00,\n    \
    \    \"weighted_revenue\": 55250.00\n    }\n]\n\ntotal_opportunities = sum(len(customer['opportunities'])\
    \ for customer in upsell_opportunities)\ntotal_potential = sum(customer['total_potential_revenue']\
    \ for customer in upsell_opportunities)\ntotal_weighted = sum(customer['weighted_revenue']\
    \ for customer in upsell_opportunities)\n\nprint(f\"\u2705 Identified {total_opportunities}\
    \ upsell opportunities\")\nprint(f\"   Total potential revenue: ${total_potential:,.2f}\"\
    )\nprint(f\"   Weighted potential revenue: ${total_weighted:,.2f}\")\n\nfor customer\
    \ in upsell_opportunities:\n    opps_count = len(customer['opportunities'])\n\
    \    print(f\"   \u2022 {customer['customer_name']}: {opps_count} opportunities,\
    \ ${customer['weighted_revenue']:,.0f} weighted value\")\n\nprint(f\"__OUTPUTS__\
    \ {json.dumps(upsell_opportunities)}\")\n"
  outputs:
  - name: upsell_opportunities
    value: Upsell opportunities identified
  packages:
  - json==2.0.9
  depends_on:
  - calculate_customer_priority_score
  description: AI identification of upselling and cross-selling opportunities
- id: detect_churn_risk
  name: Detect Churn Risk
  type: script
  script: "#!/usr/bin/env python3\nimport json\n\nprint(\"\u26A0\uFE0F Detecting churn\
    \ risks...\")\n\n# Mock churn risk detection\nchurn_risks = [\n    {\n       \
    \ \"customer_id\": \"CUST_003\",\n        \"customer_name\": \"DataSystems Corp\"\
    ,\n        \"churn_risk_score\": 0.78,\n        \"risk_level\": \"HIGH\",\n  \
    \      \"confidence_level\": 0.85,\n        \"risk_factors\": [\n            {\n\
    \                \"factor\": \"declining_engagement\",\n                \"weight\"\
    : 0.25,\n                \"description\": \"Engagement score dropped from 0.65\
    \ to 0.34 in 3 months\"\n            },\n            {\n                \"factor\"\
    : \"increased_support_tickets\",\n                \"weight\": 0.20,\n        \
    \        \"description\": \"8 support tickets this month vs 1 average\"\n    \
    \        },\n            {\n                \"factor\": \"payment_delays\",\n\
    \                \"weight\": 0.15,\n                \"description\": \"Last 2\
    \ payments were 30+ days late\"\n            },\n            {\n             \
    \   \"factor\": \"no_expansion_activity\",\n                \"weight\": 0.10,\n\
    \                \"description\": \"No additional purchases in 18 months\"\n \
    \           },\n            {\n                \"factor\": \"competitor_evaluation\"\
    ,\n                \"weight\": 0.08,\n                \"description\": \"Detected\
    \ competitor research activity\"\n            }\n        ],\n        \"revenue_at_risk\"\
    : 45000.00,\n        \"contract_renewal_date\": \"2025-12-31\",\n        \"days_to_renewal\"\
    : 189,\n        \"retention_probability\": 0.22,\n        \"recommended_actions\"\
    : [\n            {\n                \"action\": \"immediate_executive_outreach\"\
    ,\n                \"priority\": \"urgent\",\n                \"timeline\": \"\
    within_48_hours\"\n            },\n            {\n                \"action\":\
    \ \"comprehensive_health_check\",\n                \"priority\": \"high\",\n \
    \               \"timeline\": \"within_1_week\"\n            },\n            {\n\
    \                \"action\": \"value_demonstration_session\",\n              \
    \  \"priority\": \"high\",\n                \"timeline\": \"within_2_weeks\"\n\
    \            },\n            {\n                \"action\": \"contract_renegotiation\"\
    ,\n                \"priority\": \"medium\",\n                \"timeline\": \"\
    within_1_month\"\n            }\n        ]\n    },\n    {\n        \"customer_id\"\
    : \"CUST_002\",\n        \"customer_name\": \"InnovateAI Corp\",\n        \"churn_risk_score\"\
    : 0.15,\n        \"risk_level\": \"LOW\",\n        \"confidence_level\": 0.72,\n\
    \        \"risk_factors\": [\n            {\n                \"factor\": \"contract_complexity_concerns\"\
    ,\n                \"weight\": 0.10,\n                \"description\": \"Expressed\
    \ concerns about contract terms\"\n            }\n        ],\n        \"revenue_at_risk\"\
    : 165000.00,\n        \"retention_probability\": 0.85,\n        \"recommended_actions\"\
    : [\n            {\n                \"action\": \"proactive_check_in\",\n    \
    \            \"priority\": \"low\",\n                \"timeline\": \"within_2_weeks\"\
    \n            }\n        ]\n    }\n]\n\nhigh_risk_count = sum(1 for risk in churn_risks\
    \ if risk['risk_level'] == 'HIGH')\ntotal_revenue_at_risk = sum(risk['revenue_at_risk']\
    \ for risk in churn_risks)\n\nprint(f\"\u2705 Analyzed churn risk for {len(churn_risks)}\
    \ customers\")\nprint(f\"   High risk customers: {high_risk_count}\")\nprint(f\"\
    \   Total revenue at risk: ${total_revenue_at_risk:,.2f}\")\n\nfor risk in churn_risks:\n\
    \    print(f\"   \u2022 {risk['customer_name']}: {risk['risk_level']} risk ({risk['churn_risk_score']:.2f})\"\
    )\n\nprint(f\"__OUTPUTS__ {json.dumps(churn_risks)}\")\n"
  outputs:
  - name: churn_risks
    value: Churn risks detected and analyzed
  packages:
  - json==2.0.9
  depends_on:
  - identify_upsell_opportunities
  description: AI-powered churn risk detection and analysis
- id: generate_sales_insights
  name: Generate Sales Insights
  type: script
  script: "#!/usr/bin/env python3\nimport json\n\nprint(\"\U0001F4A1 Generating sales\
    \ insights...\")\n\n# Mock sales insights generation\nsales_insights = {\n   \
    \ \"executive_summary\": {\n        \"total_customers_analyzed\": 3,\n       \
    \ \"high_priority_customers\": 2,\n        \"total_pipeline_value\": 850000.00,\n\
    \        \"upsell_potential\": 145000.00,\n        \"revenue_at_risk\": 210000.00,\n\
    \        \"key_opportunities\": 4,\n        \"urgent_actions\": 3\n    },\n  \
    \  \"priority_insights\": [\n        {\n            \"insight_type\": \"opportunity\"\
    ,\n            \"priority\": \"urgent\",\n            \"customer\": \"InnovateAI\
    \ Corp\",\n            \"title\": \"Hot upgrade opportunity - Demo requested\"\
    ,\n            \"description\": \"Customer requested demo for AI Enterprise Suite\
    \ upgrade. 85% probability, $65K value. Strike while iron is hot.\",\n       \
    \     \"action\": \"Schedule demo within 24 hours\",\n            \"impact\":\
    \ \"high\",\n            \"confidence\": 0.91,\n            \"revenue_impact\"\
    : 55250.00\n        },\n        {\n            \"insight_type\": \"opportunity\"\
    ,\n            \"priority\": \"high\",\n            \"customer\": \"TechCorp Industries\"\
    ,\n            \"title\": \"Strong expansion signals detected\",\n           \
    \ \"description\": \"Customer showing multiple buying signals including increased\
    \ website activity and competitor research. Perfect timing for analytics module\
    \ expansion.\",\n            \"action\": \"Executive outreach for expansion discussion\"\
    ,\n            \"impact\": \"high\",\n            \"confidence\": 0.88,\n    \
    \        \"revenue_impact\": 52500.00\n        },\n        {\n            \"insight_type\"\
    : \"risk\",\n            \"priority\": \"urgent\",\n            \"customer\":\
    \ \"DataSystems Corp\",\n            \"title\": \"Critical churn risk - Immediate\
    \ action required\",\n            \"description\": \"Customer showing severe churn\
    \ indicators: declining engagement, increased support tickets, payment delays.\
    \ Contract renewal in 6 months.\",\n            \"action\": \"Emergency retention\
    \ strategy activation\",\n            \"impact\": \"high\",\n            \"confidence\"\
    : 0.85,\n            \"revenue_impact\": -45000.00\n        }\n    ],\n    \"\
    strategic_recommendations\": [\n        {\n            \"strategy\": \"focus_on_high_value_opportunities\"\
    ,\n            \"description\": \"Prioritize InnovateAI and TechCorp for immediate\
    \ attention. Combined potential of $107K.\",\n            \"timeline\": \"next_7_days\"\
    ,\n            \"resource_allocation\": \"assign_senior_resources\"\n        },\n\
    \        {\n            \"strategy\": \"implement_retention_program\",\n     \
    \       \"description\": \"Develop comprehensive retention strategy for DataSystems\
    \ Corp before situation worsens.\",\n            \"timeline\": \"immediate\",\n\
    \            \"resource_allocation\": \"executive_involvement\"\n        }\n \
    \   ],\n    \"performance_indicators\": {\n        \"portfolio_health_score\"\
    : 0.68,\n        \"growth_momentum\": 0.72,\n        \"retention_risk\": 0.35,\n\
    \        \"opportunity_conversion_potential\": 0.78\n    }\n}\n\nprint(f\"\u2705\
    \ Generated comprehensive sales insights\")\nprint(f\"   Priority insights: {len(sales_insights['priority_insights'])}\"\
    )\nprint(f\"   Strategic recommendations: {len(sales_insights['strategic_recommendations'])}\"\
    )\nprint(f\"   Portfolio health score: {sales_insights['performance_indicators']['portfolio_health_score']:.2f}\"\
    )\n\nfor insight in sales_insights['priority_insights']:\n    print(f\"   \u2022\
    \ {insight['priority'].upper()}: {insight['title']}\")\n\nprint(f\"__OUTPUTS__\
    \ {json.dumps(sales_insights)}\")\n"
  outputs:
  - name: sales_insights
    value: Sales insights generated
  packages:
  - json==2.0.9
  depends_on:
  - detect_churn_risk
  description: AI-generated actionable sales insights and recommendations
- id: check_high_priority_customers
  name: Check High Priority Customers
  type: script
  script: "#!/usr/bin/env python3\nimport json\n\nprint(\"\U0001F3AF Checking for\
    \ high priority customers...\")\n\n# Mock high priority check\nhigh_priority_count\
    \ = 2  # From generate_sales_insights\n\ncheck_result = {\n    \"has_high_priority_customers\"\
    : high_priority_count > 0,\n    \"high_priority_count\": high_priority_count,\n\
    \    \"requires_priority_processing\": high_priority_count > 0,\n    \"threshold_met\"\
    : high_priority_count > 0\n}\n\nif check_result[\"has_high_priority_customers\"\
    ]:\n    print(f\"\u2705 {high_priority_count} high priority customers identified\"\
    )\n    print(\"   Priority processing path will be executed\")\nelse:\n    print(\"\
    \u2139\uFE0F No high priority customers found\")\n    print(\"   Standard processing\
    \ path will be executed\")\n\nprint(f\"__OUTPUTS__ {json.dumps(check_result)}\"\
    )\n"
  outputs:
  - name: priority_check_result
    value: High priority customer check completed
  packages:
  - json==2.0.9
  depends_on:
  - generate_sales_insights
  description: Determine if high priority customers exist for specialized handling
- id: create_customer_priority_list
  name: Create Customer Priority List
  type: script
  script: "#!/usr/bin/env python3\nimport json\nfrom datetime import datetime\nfrom\
    \ datetime import timedelta\n\nprint(\"\U0001F4CB Creating customer priority list...\"\
    )\n\n# Mock priority list creation\npriority_list = {\n    \"list_id\": \"PRIORITY_LIST_2025_06_25\"\
    ,\n    \"created_date\": datetime.now().isoformat(),\n    \"officer_id\": \"OFF_001\"\
    ,\n    \"total_customers\": 2,\n    \"priority_customers\": [\n        {\n   \
    \         \"rank\": 1,\n            \"customer_id\": \"CUST_001\",\n         \
    \   \"customer_name\": \"TechCorp Industries\",\n            \"priority_score\"\
    : 92.5,\n            \"priority_tier\": \"HIGH\",\n            \"revenue_potential\"\
    : 80000.00,\n            \"weighted_value\": 52500.00,\n            \"urgency\"\
    : \"high\",\n            \"next_action\": \"Executive outreach for expansion discussion\"\
    ,\n            \"deadline\": (datetime.now() + timedelta(days=3)).isoformat(),\n\
    \            \"key_reasons\": [\n                \"Strong buying signals detected\"\
    ,\n                \"Multiple expansion opportunities\",\n                \"High\
    \ engagement score\"\n            ]\n        },\n        {\n            \"rank\"\
    : 2,\n            \"customer_id\": \"CUST_002\",\n            \"customer_name\"\
    : \"InnovateAI Corp\",\n            \"priority_score\": 87.3,\n            \"\
    priority_tier\": \"HIGH\",\n            \"revenue_potential\": 65000.00,\n   \
    \         \"weighted_value\": 55250.00,\n            \"urgency\": \"urgent\",\n\
    \            \"next_action\": \"Schedule demo within 24 hours\",\n           \
    \ \"deadline\": (datetime.now() + timedelta(hours=24)).isoformat(),\n        \
    \    \"key_reasons\": [\n                \"Demo requested\",\n               \
    \ \"Very strong buying signals\",\n                \"High probability upgrade\"\
    \n            ]\n        }\n    ],\n    \"summary_metrics\": {\n        \"total_potential_revenue\"\
    : 145000.00,\n        \"total_weighted_revenue\": 107750.00,\n        \"avg_priority_score\"\
    : 89.9,\n        \"urgent_actions\": 1,\n        \"high_actions\": 1\n    }\n\
    }\n\nprint(f\"\u2705 Priority list created with {priority_list['total_customers']}\
    \ customers\")\nprint(f\"   Total potential revenue: ${priority_list['summary_metrics']['total_potential_revenue']:,.2f}\"\
    )\nprint(f\"   Weighted revenue: ${priority_list['summary_metrics']['total_weighted_revenue']:,.2f}\"\
    )\n\nfor customer in priority_list['priority_customers']:\n    print(f\"   {customer['rank']}.\
    \ {customer['customer_name']}: {customer['priority_score']:.1f} ({customer['urgency']})\"\
    )\n\nprint(f\"__OUTPUTS__ {json.dumps(priority_list)}\")\n"
  outputs:
  - name: priority_list
    value: Customer priority list created
  packages:
  - json==2.0.9
  condition: ${priority_check_result.has_high_priority_customers} == true
  depends_on:
  - check_high_priority_customers
  description: Generate prioritized customer list for high priority customers
- id: generate_sales_recommendations
  name: Generate Sales Recommendations
  type: script
  script: "#!/usr/bin/env python3\nimport json\nfrom datetime import datetime\nfrom\
    \ datetime import timedelta\n\nprint(\"\U0001F4DD Generating sales recommendations...\"\
    )\n\n# Mock sales recommendations\nsales_recommendations = {\n    \"recommendation_set_id\"\
    : \"REC_2025_06_25_001\",\n    \"generated_date\": datetime.now().isoformat(),\n\
    \    \"officer_id\": \"OFF_001\",\n    \"recommendations\": [\n        {\n   \
    \         \"rec_id\": \"REC_001\",\n            \"customer_id\": \"CUST_002\"\
    ,\n            \"customer_name\": \"InnovateAI Corp\",\n            \"priority\"\
    : \"urgent\",\n            \"recommendation_type\": \"immediate_action\",\n  \
    \          \"title\": \"Schedule AI Enterprise Demo Immediately\",\n         \
    \   \"description\": \"Customer has requested demo for AI Enterprise Suite upgrade.\
    \ This is a hot lead with 85% close probability and $65K value.\",\n         \
    \   \"specific_actions\": [\n                {\n                    \"action\"\
    : \"call_customer_today\",\n                    \"timeline\": \"within_4_hours\"\
    ,\n                    \"owner\": \"OFF_001\",\n                    \"details\"\
    : \"Call to schedule demo for tomorrow or day after\"\n                },\n  \
    \              {\n                    \"action\": \"prepare_demo_environment\"\
    ,\n                    \"timeline\": \"within_24_hours\",\n                  \
    \  \"owner\": \"technical_team\",\n                    \"details\": \"Set up demo\
    \ with customer's specific use cases\"\n                },\n                {\n\
    \                    \"action\": \"prepare_upgrade_proposal\",\n             \
    \       \"timeline\": \"within_48_hours\",\n                    \"owner\": \"\
    OFF_001\",\n                    \"details\": \"Draft proposal with pricing and\
    \ implementation timeline\"\n                }\n            ],\n            \"\
    expected_outcome\": \"Demo scheduled and proposal ready\",\n            \"success_probability\"\
    : 0.85,\n            \"revenue_impact\": 55250.00\n        },\n        {\n   \
    \         \"rec_id\": \"REC_002\",\n            \"customer_id\": \"CUST_001\"\
    ,\n            \"customer_name\": \"TechCorp Industries\",\n            \"priority\"\
    : \"high\",\n            \"recommendation_type\": \"strategic_expansion\",\n \
    \           \"title\": \"Executive Expansion Discussion\",\n            \"description\"\
    : \"Customer showing strong buying signals and ready for analytics module expansion.\
    \ Perfect timing for strategic conversation.\",\n            \"specific_actions\"\
    : [\n                {\n                    \"action\": \"schedule_executive_meeting\"\
    ,\n                    \"timeline\": \"within_72_hours\",\n                  \
    \  \"owner\": \"OFF_001\",\n                    \"details\": \"Schedule meeting\
    \ with VP level stakeholder\"\n                },\n                {\n       \
    \             \"action\": \"prepare_roi_analysis\",\n                    \"timeline\"\
    : \"before_meeting\",\n                    \"owner\": \"sales_engineer\",\n  \
    \                  \"details\": \"Quantify time savings and efficiency gains\"\
    \n                },\n                {\n                    \"action\": \"competitive_differentiation_prep\"\
    ,\n                    \"timeline\": \"before_meeting\",\n                   \
    \ \"owner\": \"OFF_001\",\n                    \"details\": \"Prepare responses\
    \ to competitive alternatives\"\n                }\n            ],\n         \
    \   \"expected_outcome\": \"Expansion opportunity advanced\",\n            \"\
    success_probability\": 0.75,\n            \"revenue_impact\": 52500.00\n     \
    \   }\n    ],\n    \"summary\": {\n        \"total_recommendations\": 2,\n   \
    \     \"urgent_actions\": 1,\n        \"high_priority_actions\": 1,\n        \"\
    total_potential_impact\": 107750.00,\n        \"next_review_date\": (datetime.now()\
    \ + timedelta(days=7)).isoformat()\n    }\n}\n\nprint(f\"\u2705 Generated {sales_recommendations['summary']['total_recommendations']}\
    \ recommendations\")\nprint(f\"   Urgent actions: {sales_recommendations['summary']['urgent_actions']}\"\
    )\nprint(f\"   Potential impact: ${sales_recommendations['summary']['total_potential_impact']:,.2f}\"\
    )\n\nfor rec in sales_recommendations['recommendations']:\n    print(f\"   \u2022\
    \ {rec['customer_name']}: {rec['title']} ({rec['priority']})\")\n\nprint(f\"__OUTPUTS__\
    \ {json.dumps(sales_recommendations)}\")\n"
  outputs:
  - name: sales_recommendations
    value: Sales recommendations generated
  packages:
  - json==2.0.9
  condition: ${priority_check_result.has_high_priority_customers} == true
  depends_on:
  - create_customer_priority_list
  description: Create specific actionable recommendations for high priority customers
- id: update_opportunity_scores
  name: Update Opportunity Scores
  type: script
  script: "#!/usr/bin/env python3\nimport json\nfrom datetime import datetime\n\n\
    print(\"\U0001F504 Updating opportunity scores...\")\n\n# Mock opportunity score\
    \ updates\nscore_updates = [\n    {\n        \"opportunity_id\": \"OPP_2025_001234\"\
    ,\n        \"customer_id\": \"CUST_001\",\n        \"customer_name\": \"TechCorp\
    \ Industries\",\n        \"previous_score\": 75.0,\n        \"new_score\": 92.5,\n\
    \        \"score_change\": 17.5,\n        \"previous_probability\": 0.60,\n  \
    \      \"new_probability\": 0.75,\n        \"ai_confidence\": 0.88,\n        \"\
    update_timestamp\": datetime.now().isoformat(),\n        \"update_reasons\": [\n\
    \            \"increased_buying_signals\",\n            \"competitive_research_detected\"\
    ,\n            \"engagement_level_improved\"\n        ],\n        \"next_best_actions\"\
    : [\n            \"executive_level_engagement\",\n            \"expansion_proposal_preparation\"\
    \n        ]\n    },\n    {\n        \"opportunity_id\": \"OPP_2025_001235\",\n\
    \        \"customer_id\": \"CUST_002\",\n        \"customer_name\": \"InnovateAI\
    \ Corp\",\n        \"previous_score\": 70.0,\n        \"new_score\": 87.3,\n \
    \       \"score_change\": 17.3,\n        \"previous_probability\": 0.65,\n   \
    \     \"new_probability\": 0.85,\n        \"ai_confidence\": 0.91,\n        \"\
    update_timestamp\": datetime.now().isoformat(),\n        \"update_reasons\": [\n\
    \            \"demo_requested\",\n            \"technical_requirements_alignment\"\
    ,\n            \"budget_approval_indicators\"\n        ],\n        \"next_best_actions\"\
    : [\n            \"schedule_demo_immediately\",\n            \"prepare_technical_proposal\"\
    \n        ]\n    }\n]\n\ntotal_updates = len(score_updates)\navg_improvement =\
    \ sum(update['score_change'] for update in score_updates) / total_updates\n\n\
    print(f\"\u2705 Updated {total_updates} opportunity scores\")\nprint(f\"   Average\
    \ score improvement: +{avg_improvement:.1f} points\")\n\nfor update in score_updates:\n\
    \    print(f\"   \u2022 {update['customer_name']}: {update['previous_score']:.1f}\
    \ \u2192 {update['new_score']:.1f} (+{update['score_change']:.1f})\")\n\nprint(f\"\
    __OUTPUTS__ {json.dumps(score_updates)}\")\n"
  outputs:
  - name: opportunity_updates
    value: Opportunity scores updated
  packages:
  - json==2.0.9
  condition: ${priority_check_result.has_high_priority_customers} == true
  depends_on:
  - generate_sales_recommendations
  description: Update opportunity scores in CRM/Dynamics systems
- id: create_performance_dashboard
  name: Create Performance Dashboard
  type: script
  script: "#!/usr/bin/env python3\nimport json\nfrom datetime import datetime\n\n\
    print(\"\U0001F4CA Creating performance dashboard...\")\n\n# Mock dashboard creation\n\
    dashboard_data = {\n    \"dashboard_id\": \"DASH_OFF_001_2025_06_25\",\n    \"\
    officer_id\": \"OFF_001\",\n    \"officer_name\": \"Sarah Johnson\",\n    \"generated_date\"\
    : datetime.now().isoformat(),\n    \"data_freshness\": \"real_time\",\n    \"\
    summary_metrics\": {\n        \"total_customers\": 45,\n        \"high_priority_customers\"\
    : 2,\n        \"active_deals\": 15,\n        \"pipeline_value\": 850000.00,\n\
    \        \"upsell_potential\": 145000.00,\n        \"revenue_at_risk\": 45000.00,\n\
    \        \"quota_achievement\": 0.78,\n        \"performance_trend\": \"positive\"\
    \n    },\n    \"priority_customers\": [\n        {\n            \"customer_name\"\
    : \"InnovateAI Corp\",\n            \"priority_score\": 87.3,\n            \"\
    revenue_potential\": 65000.00,\n            \"urgency\": \"urgent\",\n       \
    \     \"next_action\": \"Schedule demo within 24 hours\",\n            \"status_indicator\"\
    : \"hot\"\n        },\n        {\n            \"customer_name\": \"TechCorp Industries\"\
    ,\n            \"priority_score\": 92.5,\n            \"revenue_potential\": 80000.00,\n\
    \            \"urgency\": \"high\",\n            \"next_action\": \"Executive\
    \ expansion discussion\",\n            \"status_indicator\": \"warm\"\n      \
    \  }\n    ],\n    \"opportunities\": [\n        {\n            \"type\": \"Premium\
    \ Upgrade\",\n            \"customer\": \"InnovateAI Corp\",\n            \"value\"\
    : 65000.00,\n            \"probability\": 0.85,\n            \"stage\": \"demo_requested\"\
    \n        },\n        {\n            \"type\": \"Module Expansion\",\n       \
    \     \"customer\": \"TechCorp Industries\",\n            \"value\": 45000.00,\n\
    \            \"probability\": 0.75,\n            \"stage\": \"buying_signals\"\
    \n        }\n    ],\n    \"risks\": [\n        {\n            \"customer\": \"\
    DataSystems Corp\",\n            \"risk_level\": \"high\",\n            \"revenue_at_risk\"\
    : 45000.00,\n            \"action_required\": \"immediate_retention_strategy\"\
    \n        }\n    ],\n    \"kpis\": {\n        \"conversion_rate\": 0.72,\n   \
    \     \"avg_deal_size\": 56666.67,\n        \"sales_cycle_days\": 52,\n      \
    \  \"customer_satisfaction\": 4.2,\n        \"upsell_rate\": 0.35,\n        \"\
    retention_rate\": 0.92\n    },\n    \"ai_insights\": [\n        {\n          \
    \  \"type\": \"opportunity\",\n            \"message\": \"InnovateAI Corp showing\
    \ very strong buying signals - Demo requested\",\n            \"priority\": \"\
    urgent\",\n            \"action\": \"immediate_demo_scheduling\"\n        },\n\
    \        {\n            \"type\": \"risk\",\n            \"message\": \"DataSystems\
    \ Corp requires immediate retention attention\",\n            \"priority\": \"\
    high\",\n            \"action\": \"executive_intervention\"\n        }\n    ]\n\
    }\n\nprint(f\"\u2705 Dashboard created for {dashboard_data['officer_name']}\"\
    )\nprint(f\"   High priority customers: {dashboard_data['summary_metrics']['high_priority_customers']}\"\
    )\nprint(f\"   Pipeline value: ${dashboard_data['summary_metrics']['pipeline_value']:,.2f}\"\
    )\nprint(f\"   Quota achievement: {dashboard_data['summary_metrics']['quota_achievement']*100:.0f}%\"\
    )\n\nprint(f\"__OUTPUTS__ {json.dumps(dashboard_data)}\")\n"
  outputs:
  - name: performance_dashboard
    value: Performance dashboard created
  packages:
  - json==2.0.9
  condition: ${priority_check_result.has_high_priority_customers} == true
  depends_on:
  - update_opportunity_scores
  description: Generate comprehensive sales performance dashboard
- id: log_no_high_priority
  name: Log No High Priority
  type: script
  script: "#!/usr/bin/env python3\nimport json\nfrom datetime import datetime\n\n\
    print(\"\u2139\uFE0F No high priority customers identified\")\n\nlog_result =\
    \ {\n    \"log_type\": \"no_high_priority_customers\",\n    \"timestamp\": datetime.now().isoformat(),\n\
    \    \"officer_id\": \"OFF_001\",\n    \"total_customers_analyzed\": 3,\n    \"\
    high_priority_threshold\": 80.0,\n    \"customers_above_threshold\": 0,\n    \"\
    message\": \"All customers below high priority threshold. Standard processing\
    \ applied.\",\n    \"next_analysis_scheduled\": \"2025-06-26T09:00:00Z\"\n}\n\n\
    print(f\"\U0001F4DD Logged: {log_result['message']}\")\nprint(f\"   Customers\
    \ analyzed: {log_result['total_customers_analyzed']}\")\nprint(f\"   Next analysis:\
    \ {log_result['next_analysis_scheduled']}\")\n\nprint(f\"__OUTPUTS__ {json.dumps(log_result)}\"\
    )\n"
  outputs:
  - name: no_priority_log
    value: No high priority customers logged
  packages:
  - json==2.0.9
  condition: ${priority_check_result.has_high_priority_customers} == false
  depends_on:
  - check_high_priority_customers
  description: Log when no high priority customers are identified
- id: send_daily_insights_email
  name: Send Daily Insights Email
  type: script
  script: "#!/usr/bin/env python3\nimport json\nfrom datetime import datetime\n\n\
    print(\"\U0001F4E7 Sending daily insights email...\")\n\n# Mock email sending\n\
    email_result = {\n    \"email_id\": \"EMAIL_INSIGHTS_2025_06_25_001\",\n    \"\
    recipient\": \"sarah.johnson@company.com\",\n    \"recipient_name\": \"Sarah Johnson\"\
    ,\n    \"subject\": \"Daily Sales Intelligence Report - June 25, 2025\",\n   \
    \ \"sent_at\": datetime.now().isoformat(),\n    \"delivery_status\": \"sent\"\
    ,\n    \"content_summary\": {\n        \"high_priority_customers\": 2,\n     \
    \   \"urgent_actions\": 1,\n        \"opportunities_identified\": 4,\n       \
    \ \"risks_detected\": 1,\n        \"total_potential_revenue\": 145000.00,\n  \
    \      \"revenue_at_risk\": 45000.00\n    },\n    \"key_highlights\": [\n    \
    \    \"\U0001F6A8 URGENT: InnovateAI Corp demo request - Schedule within 24 hours\
    \ ($65K opportunity)\",\n        \"\U0001F3AF HIGH: TechCorp Industries expansion\
    \ opportunity - Executive meeting needed ($80K potential)\",\n        \"\u26A0\
    \uFE0F RISK: DataSystems Corp churn risk - Immediate retention strategy required\
    \ ($45K at risk)\"\n    ],\n    \"email_engagement\": {\n        \"tracking_enabled\"\
    : True,\n        \"expected_open_rate\": 0.85,\n        \"call_to_action\": \"\
    View Full Dashboard\"\n    },\n    \"follow_up_scheduled\": {\n        \"dashboard_notification\"\
    : True,\n        \"mobile_push\": True,\n        \"slack_summary\": True\n   \
    \ }\n}\n\nprint(f\"\u2705 Daily insights email sent to {email_result['recipient_name']}\"\
    )\nprint(f\"   Subject: {email_result['subject']}\")\nprint(f\"   Key highlights:\
    \ {len(email_result['key_highlights'])}\")\nprint(f\"   Delivery status: {email_result['delivery_status']}\"\
    )\n\nfor highlight in email_result['key_highlights']:\n    print(f\"   \u2022\
    \ {highlight}\")\n\nprint(f\"__OUTPUTS__ {json.dumps(email_result)}\")\n"
  outputs:
  - name: daily_email_sent
    value: Daily insights email sent
  packages:
  - json==2.0.9
  depends_on:
  - create_performance_dashboard
  - log_no_high_priority
  description: Send daily intelligence report to sales officer
inputs:
- name: officer_id
  type: string
  default: OFF_001
  description: Sales officer ID for portfolio analysis
- name: analysis_date
  type: string
  default: '2025-06-25'
  description: Date for intelligence analysis
outputs:
  daily_report:
    type: object
    source: send_daily_insights_email
    description: Daily insights email delivery confirmation
  dashboard_data:
    type: object
    source: create_performance_dashboard
    description: Performance dashboard data
  portfolio_analysis:
    type: object
    source: get_sales_officer_portfolio
    description: Complete portfolio analysis results
  sales_intelligence:
    type: object
    source: generate_sales_insights
    description: AI-generated sales insights and recommendations
  customer_priorities:
    type: object
    source: calculate_customer_priority_score
    description: Customer priority scores and rankings
version: '1.0'
triggers:
- name: Daily Sales Intelligence
  type: scheduled
  schedule: 0 9 * * *
  description: Run daily sales intelligence analysis at 9:00 AM
- name: Manual Intelligence Analysis
  type: manual
  description: Manually trigger sales intelligence workflow
- name: Sales Officer Login Trigger
  path: /webhook/officer-login
  type: webhook
  config:
    method: POST
    headers:
    - name: Content-Type
      value: application/json
      required: true
    authentication: none
  description: Triggered when sales officer logs in
  input_mapping:
  - webhook_field: officer_id
    workflow_input: officer_id
description: Daily automated sales intelligence workflow for customer prioritization
  and opportunity identification
Execution ID Status Started Duration Actions
8aeb4be4... COMPLETED 2025-07-04
15:16:38
N/A View
5b705620... COMPLETED 2025-07-04
15:15:45
N/A View
cc8b734d... COMPLETED 2025-07-03
08:52:14
N/A View
bc581022... COMPLETED 2025-07-02
11:15:04
N/A View
65a8073a... COMPLETED 2025-07-01
18:50:20
N/A View