SMC AI RM Monitoring and Learning
Monitors campaign outcomes and continuously improves AI models while maintaining compliance
Workflow Information
ID: smc_ai_rm_monitoring_learning
Namespace: smc_wealth_management
Version: 1.0
Created: 2025-07-17
Updated: 2025-07-17
Tasks: 8
Quick Actions
Inputs
| Name | Type | Required | Default |
|---|---|---|---|
monitoring_period |
string | Optional |
last_7_days
|
customer_ids |
string | Optional |
all
|
campaign_types |
string | Optional |
all
|
enable_model_update |
boolean | Optional |
True
|
Outputs
| Name | Type | Source |
|---|---|---|
anomalies |
object | Detected anomalies |
model_updates |
object | Applied model updates |
model_evaluation |
object | AI model performance metrics |
campaign_outcomes |
object | Campaign execution outcomes |
learning_insights |
object | Extracted learning insights |
monitoring_report |
object | Comprehensive monitoring report |
performance_analysis |
object | Detailed performance analysis |
Tasks
collect_campaign_outcomes
scriptGather results from executed campaigns
analyze_performance
scriptDeep analysis of campaign performance by segment
detect_anomalies
scriptIdentify unusual patterns in campaign outcomes
evaluate_model_performance
scriptAssess AI model prediction accuracy
generate_learning_insights
scriptExtract actionable insights for model improvement
update_ai_models
scriptApply learning insights to improve AI models
generate_monitoring_report
scriptCreate comprehensive monitoring and learning report
store_learning_data
scriptPersist learning data for future reference
YAML Source
id: smc_ai_rm_monitoring_learning
name: SMC AI RM Monitoring and Learning
retry:
retryOn:
- TEMPORARY_FAILURE
- TIMEOUT
maxDelay: 30s
maxAttempts: 2
initialDelay: 5s
backoffMultiplier: 2.0
tasks:
- id: collect_campaign_outcomes
name: Collect Campaign Outcomes
type: script
script: "import json\nimport time\nimport random\nfrom datetime import datetime,\
\ timedelta\n\n# Simulate data collection\ntime.sleep(1)\n\nmonitoring_period\
\ = \"${monitoring_period}\"\ncampaign_types = \"${campaign_types}\"\n\n# Define\
\ period\nperiod_days = {\n \"last_24_hours\": 1,\n \"last_7_days\": 7,\n\
\ \"last_30_days\": 30\n}\n\ndays = period_days.get(monitoring_period, 7)\n\
\n# Simulate campaign outcomes data\ncampaigns_executed = []\n\n# Generate sample\
\ campaign outcomes\ncampaign_templates = {\n \"retention\": {\n \"\
success_rate\": 0.65,\n \"response_rate\": 0.75,\n \"avg_response_time\"\
: 4.2\n },\n \"engagement\": {\n \"success_rate\": 0.72,\n \
\ \"response_rate\": 0.55,\n \"avg_response_time\": 8.5\n },\n \"\
upsell\": {\n \"success_rate\": 0.42,\n \"response_rate\": 0.35,\n\
\ \"avg_response_time\": 48.0\n }\n}\n\n# Generate campaigns for the\
\ period\nnum_campaigns = random.randint(20, 100)\n\nfor i in range(num_campaigns):\n\
\ campaign_type = random.choice([\"retention\", \"engagement\", \"upsell\"\
])\n template = campaign_templates[campaign_type]\n \n # Simulate outcome\n\
\ responded = random.random() < template[\"response_rate\"]\n successful\
\ = responded and (random.random() < template[\"success_rate\"])\n \n campaign\
\ = {\n \"campaign_id\": f\"CAMP_{random.randint(10000, 99999)}\",\n \
\ \"customer_id\": f\"CUST{random.randint(1, 999):03d}\",\n \"campaign_type\"\
: campaign_type,\n \"execution_date\": (datetime.now() - timedelta(days=random.randint(0,\
\ days))).strftime(\"%Y-%m-%d\"),\n \"customer_segment\": random.choice([\"\
PLATINUM\", \"GOLD\", \"SILVER\"]),\n \"risk_level\": random.choice([\"\
HIGH\", \"MEDIUM\", \"LOW\"]),\n \"response_received\": responded,\n \
\ \"outcome\": \"SUCCESS\" if successful else \"FAILED\" if responded else\
\ \"NO_RESPONSE\",\n \"response_time_hours\": random.uniform(1, template[\"\
avg_response_time\"]) if responded else None,\n \"revenue_impact\": random.randint(5000,\
\ 50000) if successful else 0,\n \"compliance_maintained\": True\n }\n\
\ \n campaigns_executed.append(campaign)\n\n# Calculate summary statistics\n\
total_campaigns = len(campaigns_executed)\nsuccessful_campaigns = sum(1 for c\
\ in campaigns_executed if c[\"outcome\"] == \"SUCCESS\")\nresponse_rate = sum(1\
\ for c in campaigns_executed if c[\"response_received\"]) / total_campaigns\n\
\nresult = {\n \"collection_completed\": True,\n \"monitoring_period\":\
\ monitoring_period,\n \"period_days\": days,\n \"campaigns_analyzed\":\
\ total_campaigns,\n \"campaigns_data\": campaigns_executed,\n \"summary\"\
: {\n \"total_campaigns\": total_campaigns,\n \"successful_campaigns\"\
: successful_campaigns,\n \"success_rate\": round(successful_campaigns\
\ / total_campaigns, 2),\n \"response_rate\": round(response_rate, 2),\n\
\ \"total_revenue_impact\": sum(c[\"revenue_impact\"] for c in campaigns_executed)\n\
\ },\n \"timestamp\": datetime.now().isoformat()\n}\n\nprint(f\"__OUTPUTS__\
\ {json.dumps(result)}\")\n"
description: Gather results from executed campaigns
timeout_seconds: 180
- id: analyze_performance
name: Analyze Campaign Performance
type: script
script: "import json\nimport time\nfrom datetime import datetime\nfrom collections\
\ import defaultdict\n\n# Simulate analysis\ntime.sleep(1)\n\ncampaign_data =\
\ ${collect_campaign_outcomes.campaigns_data}\n\n# Analyze by campaign type\n\
type_analysis = defaultdict(lambda: {\n \"total\": 0,\n \"successful\":\
\ 0,\n \"responded\": 0,\n \"revenue\": 0\n})\n\n# Analyze by customer segment\n\
segment_analysis = defaultdict(lambda: {\n \"total\": 0,\n \"successful\"\
: 0,\n \"responded\": 0,\n \"revenue\": 0\n})\n\n# Analyze by risk level\n\
risk_analysis = defaultdict(lambda: {\n \"total\": 0,\n \"successful\":\
\ 0,\n \"responded\": 0,\n \"revenue\": 0\n})\n\n# Process each campaign\n\
for campaign in campaign_data:\n # By type\n type_stats = type_analysis[campaign[\"\
campaign_type\"]]\n type_stats[\"total\"] += 1\n if campaign[\"outcome\"\
] == \"SUCCESS\":\n type_stats[\"successful\"] += 1\n if campaign[\"\
response_received\"]:\n type_stats[\"responded\"] += 1\n type_stats[\"\
revenue\"] += campaign[\"revenue_impact\"]\n \n # By segment\n segment_stats\
\ = segment_analysis[campaign[\"customer_segment\"]]\n segment_stats[\"total\"\
] += 1\n if campaign[\"outcome\"] == \"SUCCESS\":\n segment_stats[\"\
successful\"] += 1\n if campaign[\"response_received\"]:\n segment_stats[\"\
responded\"] += 1\n segment_stats[\"revenue\"] += campaign[\"revenue_impact\"\
]\n \n # By risk\n risk_stats = risk_analysis[campaign[\"risk_level\"\
]]\n risk_stats[\"total\"] += 1\n if campaign[\"outcome\"] == \"SUCCESS\"\
:\n risk_stats[\"successful\"] += 1\n if campaign[\"response_received\"\
]:\n risk_stats[\"responded\"] += 1\n risk_stats[\"revenue\"] += campaign[\"\
revenue_impact\"]\n\n# Calculate rates\ndef calculate_rates(stats):\n for key,\
\ data in stats.items():\n if data[\"total\"] > 0:\n data[\"\
success_rate\"] = round(data[\"successful\"] / data[\"total\"], 2)\n \
\ data[\"response_rate\"] = round(data[\"responded\"] / data[\"total\"], 2)\n\
\ data[\"avg_revenue\"] = round(data[\"revenue\"] / data[\"total\"\
], 2)\n else:\n data[\"success_rate\"] = 0\n data[\"\
response_rate\"] = 0\n data[\"avg_revenue\"] = 0\n return dict(stats)\n\
\n# Key insights\ninsights = []\n\n# Find best performing campaign type\nbest_type\
\ = max(type_analysis.items(), key=lambda x: x[1][\"success_rate\"])\ninsights.append(f\"\
{best_type[0].title()} campaigns show highest success rate at {best_type[1]['success_rate']*100}%\"\
)\n\n# Find best performing segment\nbest_segment = max(segment_analysis.items(),\
\ key=lambda x: x[1][\"revenue\"])\ninsights.append(f\"{best_segment[0]} segment\
\ generates highest revenue: \u20B9{best_segment[1]['revenue']:,}\")\n\n# Risk\
\ level effectiveness\nhigh_risk_success = risk_analysis[\"HIGH\"][\"success_rate\"\
] if \"HIGH\" in risk_analysis else 0\nif high_risk_success > 0.5:\n insights.append(f\"\
Retention strategies for high-risk customers showing {high_risk_success*100}%\
\ success rate\")\n\nresult = {\n \"analysis_completed\": True,\n \"performance_by_type\"\
: calculate_rates(type_analysis),\n \"performance_by_segment\": calculate_rates(segment_analysis),\n\
\ \"performance_by_risk\": calculate_rates(risk_analysis),\n \"key_insights\"\
: insights,\n \"recommendations\": [\n \"Focus on \" + best_type[0]\
\ + \" campaigns for better ROI\",\n \"Prioritize \" + best_segment[0]\
\ + \" segment customers\",\n \"Adjust risk thresholds based on outcome\
\ patterns\"\n ],\n \"timestamp\": datetime.now().isoformat()\n}\n\nprint(f\"\
__OUTPUTS__ {json.dumps(result)}\")\n"
depends_on:
- collect_campaign_outcomes
description: Deep analysis of campaign performance by segment
previous_node: collect_campaign_outcomes
timeout_seconds: 120
- id: detect_anomalies
name: Detect Anomalies
type: script
script: "import json\nimport time\nimport random\nfrom datetime import datetime\n\
\n# Simulate anomaly detection\ntime.sleep(1)\n\nperformance_data = ${analyze_performance}\n\
\nanomalies = []\n\n# Check for unusual success rates\nfor campaign_type, stats\
\ in performance_data[\"performance_by_type\"].items():\n if stats[\"success_rate\"\
] < 0.3:\n anomalies.append({\n \"type\": \"low_success_rate\"\
,\n \"category\": \"campaign_type\",\n \"identifier\": campaign_type,\n\
\ \"metric\": \"success_rate\",\n \"value\": stats[\"success_rate\"\
],\n \"severity\": \"HIGH\",\n \"description\": f\"{campaign_type}\
\ campaigns showing unusually low success rate\"\n })\n\n# Check for segment\
\ anomalies\nfor segment, stats in performance_data[\"performance_by_segment\"\
].items():\n if stats[\"response_rate\"] < 0.2:\n anomalies.append({\n\
\ \"type\": \"low_response_rate\",\n \"category\": \"customer_segment\"\
,\n \"identifier\": segment,\n \"metric\": \"response_rate\"\
,\n \"value\": stats[\"response_rate\"],\n \"severity\"\
: \"MEDIUM\",\n \"description\": f\"{segment} segment showing poor\
\ response rates\"\n })\n\n# Check for risk level anomalies\nfor risk_level,\
\ stats in performance_data[\"performance_by_risk\"].items():\n if risk_level\
\ == \"LOW\" and stats[\"success_rate\"] < 0.4:\n anomalies.append({\n\
\ \"type\": \"unexpected_pattern\",\n \"category\": \"risk_level\"\
,\n \"identifier\": risk_level,\n \"metric\": \"success_rate\"\
,\n \"value\": stats[\"success_rate\"],\n \"severity\":\
\ \"MEDIUM\",\n \"description\": \"Low-risk customers showing poor\
\ campaign outcomes\"\n })\n\n# Generate corrective actions\ncorrective_actions\
\ = []\nfor anomaly in anomalies:\n if anomaly[\"type\"] == \"low_success_rate\"\
:\n corrective_actions.append({\n \"anomaly_id\": anomaly[\"\
identifier\"],\n \"action\": \"Review and revise campaign content\"\
,\n \"priority\": \"HIGH\"\n })\n elif anomaly[\"type\"]\
\ == \"low_response_rate\":\n corrective_actions.append({\n \
\ \"anomaly_id\": anomaly[\"identifier\"],\n \"action\": \"Adjust communication\
\ timing and channels\",\n \"priority\": \"MEDIUM\"\n })\n\n\
result = {\n \"anomaly_detection_completed\": True,\n \"anomalies_found\"\
: len(anomalies),\n \"anomalies\": anomalies,\n \"corrective_actions\":\
\ corrective_actions,\n \"alert_required\": len([a for a in anomalies if a[\"\
severity\"] == \"HIGH\"]) > 0,\n \"timestamp\": datetime.now().isoformat()\n\
}\n\nprint(f\"__OUTPUTS__ {json.dumps(result)}\")\n"
depends_on:
- analyze_performance
description: Identify unusual patterns in campaign outcomes
previous_node: analyze_performance
timeout_seconds: 120
- id: evaluate_model_performance
name: Evaluate Model Performance
type: script
script: "import json\nimport time\nimport random\nfrom datetime import datetime\n\
\n# Simulate model evaluation\ntime.sleep(1)\n\ncampaign_data = ${collect_campaign_outcomes.campaigns_data}\n\
\n# Simulate model predictions vs actual outcomes\nmodel_metrics = {\n \"risk_prediction\"\
: {\n \"total_predictions\": len(campaign_data),\n \"correct_predictions\"\
: 0,\n \"precision\": 0,\n \"recall\": 0,\n \"f1_score\"\
: 0\n },\n \"campaign_selection\": {\n \"total_selections\": len(campaign_data),\n\
\ \"optimal_selections\": 0,\n \"selection_accuracy\": 0\n },\n\
\ \"response_prediction\": {\n \"total_predictions\": len(campaign_data),\n\
\ \"correct_predictions\": 0,\n \"mae\": 0 # Mean Absolute Error\
\ for response time\n }\n}\n\n# Calculate risk prediction accuracy\nrisk_predictions_correct\
\ = 0\nfor campaign in campaign_data:\n # Simulate that HIGH risk correctly\
\ predicted low success\n if campaign[\"risk_level\"] == \"HIGH\" and campaign[\"\
outcome\"] != \"SUCCESS\":\n risk_predictions_correct += 1\n elif campaign[\"\
risk_level\"] == \"LOW\" and campaign[\"outcome\"] == \"SUCCESS\":\n risk_predictions_correct\
\ += 1\n elif campaign[\"risk_level\"] == \"MEDIUM\":\n # Medium risk\
\ is correct 70% of the time\n if random.random() < 0.7:\n risk_predictions_correct\
\ += 1\n\nmodel_metrics[\"risk_prediction\"][\"correct_predictions\"] = risk_predictions_correct\n\
model_metrics[\"risk_prediction\"][\"accuracy\"] = round(risk_predictions_correct\
\ / len(campaign_data), 2)\n\n# Calculate campaign selection accuracy\noptimal_selections\
\ = sum(1 for c in campaign_data if c[\"outcome\"] == \"SUCCESS\")\nmodel_metrics[\"\
campaign_selection\"][\"optimal_selections\"] = optimal_selections\nmodel_metrics[\"\
campaign_selection\"][\"selection_accuracy\"] = round(optimal_selections / len(campaign_data),\
\ 2)\n\n# Response prediction accuracy\nresponse_predictions_correct = sum(1 for\
\ c in campaign_data if c[\"response_received\"])\nmodel_metrics[\"response_prediction\"\
][\"correct_predictions\"] = response_predictions_correct\nmodel_metrics[\"response_prediction\"\
][\"accuracy\"] = round(response_predictions_correct / len(campaign_data), 2)\n\
\n# Model confidence scores\nconfidence_scores = {\n \"overall_confidence\"\
: round(random.uniform(0.82, 0.91), 2),\n \"risk_assessment_confidence\": round(random.uniform(0.85,\
\ 0.93), 2),\n \"campaign_selection_confidence\": round(random.uniform(0.78,\
\ 0.88), 2),\n \"timing_prediction_confidence\": round(random.uniform(0.73,\
\ 0.85), 2)\n}\n\n# Areas for improvement\nimprovement_areas = []\nif model_metrics[\"\
risk_prediction\"][\"accuracy\"] < 0.8:\n improvement_areas.append(\"Enhance\
\ risk prediction algorithms\")\nif model_metrics[\"campaign_selection\"][\"selection_accuracy\"\
] < 0.6:\n improvement_areas.append(\"Improve campaign selection logic\")\n\
if confidence_scores[\"timing_prediction_confidence\"] < 0.8:\n improvement_areas.append(\"\
Better timing prediction models needed\")\n\nresult = {\n \"evaluation_completed\"\
: True,\n \"model_metrics\": model_metrics,\n \"confidence_scores\": confidence_scores,\n\
\ \"improvement_areas\": improvement_areas,\n \"model_version\": \"2.0\"\
,\n \"evaluation_timestamp\": datetime.now().isoformat()\n}\n\nprint(f\"__OUTPUTS__\
\ {json.dumps(result)}\")\n"
depends_on:
- collect_campaign_outcomes
- analyze_performance
description: Assess AI model prediction accuracy
previous_node: detect_anomalies
timeout_seconds: 120
- id: generate_learning_insights
name: Generate Learning Insights
type: script
script: "import json\nimport time\nfrom datetime import datetime\n\n# Simulate insight\
\ generation\ntime.sleep(1)\n\nperformance_analysis = ${analyze_performance}\n\
anomalies = ${detect_anomalies}\nmodel_evaluation = ${evaluate_model_performance}\n\
\n# Extract patterns from successful campaigns\nsuccessful_patterns = []\n\n#\
\ From performance analysis\nfor campaign_type, stats in performance_analysis[\"\
performance_by_type\"].items():\n if stats[\"success_rate\"] > 0.6:\n \
\ successful_patterns.append({\n \"pattern\": f\"{campaign_type}_high_success\"\
,\n \"description\": f\"{campaign_type} campaigns show {stats['success_rate']*100}%\
\ success rate\",\n \"factors\": [\"campaign_type\", \"content_strategy\"\
, \"timing\"],\n \"confidence\": stats[\"success_rate\"]\n })\n\
\n# From segment analysis\nfor segment, stats in performance_analysis[\"performance_by_segment\"\
].items():\n if stats[\"avg_revenue\"] > 20000:\n successful_patterns.append({\n\
\ \"pattern\": f\"{segment}_high_value\",\n \"description\"\
: f\"{segment} segment generates \u20B9{stats['avg_revenue']} average revenue\"\
,\n \"factors\": [\"customer_segment\", \"product_affinity\", \"engagement_level\"\
],\n \"confidence\": 0.85\n })\n\n# Failed pattern analysis\n\
failure_patterns = []\nfor anomaly in anomalies[\"anomalies\"]:\n failure_patterns.append({\n\
\ \"pattern\": anomaly[\"type\"],\n \"description\": anomaly[\"\
description\"],\n \"impact\": anomaly[\"severity\"],\n \"recommended_action\"\
: \"Adjust model parameters for \" + anomaly[\"identifier\"]\n })\n\n# Model\
\ adjustment recommendations\nmodel_adjustments = []\n\nif model_evaluation[\"\
model_metrics\"][\"risk_prediction\"][\"accuracy\"] < 0.85:\n model_adjustments.append({\n\
\ \"component\": \"risk_prediction_model\",\n \"adjustment\": \"\
Add more behavioral features\",\n \"expected_improvement\": \"+5-8% accuracy\"\
\n })\n\nif len(failure_patterns) > 2:\n model_adjustments.append({\n \
\ \"component\": \"campaign_selection_algorithm\",\n \"adjustment\"\
: \"Implement adaptive thresholds\",\n \"expected_improvement\": \"+10%\
\ success rate\"\n })\n\n# Feature importance updates\nfeature_importance_updates\
\ = {\n \"login_frequency\": 0.25, # Increased from 0.20\n \"transaction_recency\"\
: 0.30, # Increased from 0.25\n \"portfolio_concentration\": 0.20, # Decreased\
\ from 0.25\n \"fund_movement\": 0.15, # Same\n \"product_usage\": 0.10\
\ # Decreased from 0.15\n}\n\n# Learning summary\nlearning_summary = {\n \"\
total_patterns_identified\": len(successful_patterns) + len(failure_patterns),\n\
\ \"success_patterns\": len(successful_patterns),\n \"failure_patterns\"\
: len(failure_patterns),\n \"model_adjustments_recommended\": len(model_adjustments),\n\
\ \"confidence_in_insights\": 0.88\n}\n\nresult = {\n \"insights_generated\"\
: True,\n \"successful_patterns\": successful_patterns,\n \"failure_patterns\"\
: failure_patterns,\n \"model_adjustments\": model_adjustments,\n \"feature_importance_updates\"\
: feature_importance_updates,\n \"learning_summary\": learning_summary,\n \
\ \"timestamp\": datetime.now().isoformat()\n}\n\nprint(f\"__OUTPUTS__ {json.dumps(result)}\"\
)\n"
depends_on:
- analyze_performance
- detect_anomalies
- evaluate_model_performance
description: Extract actionable insights for model improvement
previous_node: evaluate_model_performance
timeout_seconds: 120
- id: update_ai_models
name: Update AI Models
type: script
script: "import json\nimport time\nimport random\nfrom datetime import datetime,\
\ timedelta\n\n# Check if model update is enabled\nenable_update = ${enable_model_update}\n\
\nif not enable_update:\n result = {\n \"update_skipped\": True,\n \
\ \"reason\": \"Model update disabled\",\n \"timestamp\": datetime.now().isoformat()\n\
\ }\nelse:\n # Simulate model update\n time.sleep(2)\n \n learning_insights\
\ = ${generate_learning_insights}\n \n # Models to update\n models_updated\
\ = []\n \n # Update risk prediction model\n risk_model_update = {\n\
\ \"model_name\": \"risk_prediction_model\",\n \"version_before\"\
: \"2.0\",\n \"version_after\": \"2.1\",\n \"changes_applied\":\
\ [\n \"Updated feature weights based on importance\",\n \
\ \"Added behavioral pattern recognition\",\n \"Adjusted risk thresholds\"\
\n ],\n \"expected_improvement\": \"+6% accuracy\",\n \"\
validation_score\": 0.89,\n \"deployment_status\": \"STAGED\"\n }\n\
\ models_updated.append(risk_model_update)\n \n # Update campaign selection\
\ model\n campaign_model_update = {\n \"model_name\": \"campaign_selection_model\"\
,\n \"version_before\": \"1.8\",\n \"version_after\": \"1.9\",\n\
\ \"changes_applied\": [\n \"Incorporated successful pattern\
\ learnings\",\n \"Added segment-specific strategies\",\n \
\ \"Improved timing predictions\"\n ],\n \"expected_improvement\"\
: \"+8% success rate\",\n \"validation_score\": 0.86,\n \"deployment_status\"\
: \"STAGED\"\n }\n models_updated.append(campaign_model_update)\n \n\
\ # Update response prediction model\n response_model_update = {\n \
\ \"model_name\": \"response_prediction_model\",\n \"version_before\"\
: \"1.5\",\n \"version_after\": \"1.6\",\n \"changes_applied\":\
\ [\n \"Enhanced customer engagement scoring\",\n \"Added\
\ communication preference learning\",\n \"Improved response time predictions\"\
\n ],\n \"expected_improvement\": \"+12% response rate\",\n \
\ \"validation_score\": 0.84,\n \"deployment_status\": \"STAGED\"\n\
\ }\n models_updated.append(response_model_update)\n \n # A/B testing\
\ configuration\n ab_testing_config = {\n \"enabled\": True,\n \
\ \"test_percentage\": 20, # 20% on new models\n \"control_percentage\"\
: 80, # 80% on current models\n \"duration_days\": 14,\n \"success_metrics\"\
: [\n \"campaign_success_rate\",\n \"customer_response_rate\"\
,\n \"revenue_impact\"\n ]\n }\n \n # Rollback plan\n\
\ rollback_plan = {\n \"automatic_rollback_enabled\": True,\n \
\ \"rollback_triggers\": [\n \"success_rate_drop > 10%\",\n \
\ \"error_rate > 5%\",\n \"compliance_violation\"\n ],\n\
\ \"monitoring_period\": \"48_hours\",\n \"approval_required\":\
\ False\n }\n \n result = {\n \"update_completed\": True,\n \
\ \"models_updated\": models_updated,\n \"total_models_updated\":\
\ len(models_updated),\n \"ab_testing_config\": ab_testing_config,\n \
\ \"rollback_plan\": rollback_plan,\n \"deployment_schedule\": (datetime.now()\
\ + timedelta(days=1)).isoformat(),\n \"update_confidence\": 0.91,\n \
\ \"timestamp\": datetime.now().isoformat()\n }\n\nprint(f\"__OUTPUTS__\
\ {json.dumps(result)}\")\n"
depends_on:
- generate_learning_insights
description: Apply learning insights to improve AI models
previous_node: generate_learning_insights
timeout_seconds: 180
- id: generate_monitoring_report
name: Generate Monitoring Report
type: script
script: "import json\nimport time\nfrom datetime import datetime\n\n# Simulate report\
\ generation\ntime.sleep(1)\n\n# Gather all results\ncampaign_outcomes = ${collect_campaign_outcomes.summary}\n\
performance_analysis = ${analyze_performance}\nanomalies = ${detect_anomalies}\n\
model_evaluation = ${evaluate_model_performance}\nlearning_insights = ${generate_learning_insights}\n\
model_updates = ${update_ai_models}\n\n# Executive summary\nexecutive_summary\
\ = {\n \"monitoring_period\": \"${monitoring_period}\",\n \"campaigns_analyzed\"\
: campaign_outcomes[\"total_campaigns\"],\n \"overall_success_rate\": f\"{campaign_outcomes['success_rate']*100}%\"\
,\n \"total_revenue_impact\": f\"\u20B9{campaign_outcomes['total_revenue_impact']:,}\"\
,\n \"anomalies_detected\": anomalies[\"anomalies_found\"],\n \"model_accuracy\"\
: f\"{model_evaluation['model_metrics']['risk_prediction']['accuracy']*100}%\"\
,\n \"models_updated\": model_updates.get(\"total_models_updated\", 0)\n}\n\
\n# Key findings\nkey_findings = [\n f\"Campaign success rate: {campaign_outcomes['success_rate']*100}%\"\
,\n f\"Customer response rate: {campaign_outcomes['response_rate']*100}%\"\
,\n f\"Revenue generated: \u20B9{campaign_outcomes['total_revenue_impact']:,}\"\
,\n f\"Model prediction accuracy: {model_evaluation['model_metrics']['risk_prediction']['accuracy']*100}%\"\
\n]\n\n# Add performance insights\nkey_findings.extend(performance_analysis[\"\
key_insights\"])\n\n# Recommendations\nrecommendations = {\n \"immediate_actions\"\
: [],\n \"short_term\": [],\n \"long_term\": []\n}\n\n# Immediate actions\
\ for anomalies\nif anomalies[\"alert_required\"]:\n recommendations[\"immediate_actions\"\
].append(\"Address high-severity anomalies in campaign performance\")\n\n# Short-term\
\ recommendations\nrecommendations[\"short_term\"].extend(performance_analysis[\"\
recommendations\"])\n\n# Long-term recommendations\nif learning_insights[\"model_adjustments\"\
]:\n recommendations[\"long_term\"].append(\"Implement recommended model adjustments\"\
)\n\n# Compliance summary\ncompliance_summary = {\n \"compliance_maintained\"\
: True,\n \"violations_detected\": 0,\n \"audit_trail_complete\": True,\n\
\ \"data_privacy_maintained\": True,\n \"sebi_guidelines_followed\": True\n\
}\n\n# Next steps\nnext_steps = [\n {\n \"action\": \"Deploy updated\
\ models to A/B testing\",\n \"timeline\": \"Within 24 hours\",\n \
\ \"owner\": \"AI Team\"\n },\n {\n \"action\": \"Monitor A/B test\
\ results\",\n \"timeline\": \"Next 14 days\",\n \"owner\": \"Analytics\
\ Team\"\n },\n {\n \"action\": \"Review anomaly corrections\",\n\
\ \"timeline\": \"Within 48 hours\",\n \"owner\": \"Business Team\"\
\n }\n]\n\n# Full report\nreport = {\n \"report_id\": f\"MON_REPORT_{datetime.now().strftime('%Y%m%d%H%M%S')}\"\
,\n \"report_type\": \"AI_RM_MONITORING_LEARNING\",\n \"generated_at\":\
\ datetime.now().isoformat(),\n \"executive_summary\": executive_summary,\n\
\ \"key_findings\": key_findings,\n \"detailed_analysis\": {\n \"\
campaign_performance\": performance_analysis,\n \"anomaly_detection\":\
\ anomalies,\n \"model_evaluation\": model_evaluation,\n \"learning_insights\"\
: learning_insights\n },\n \"recommendations\": recommendations,\n \"\
compliance_summary\": compliance_summary,\n \"model_updates\": model_updates,\n\
\ \"next_steps\": next_steps,\n \"report_confidence\": 0.92\n}\n\nresult\
\ = {\n \"report_generated\": True,\n \"report\": report,\n \"distribution_list\"\
: [\"ai_team\", \"business_team\", \"compliance_team\", \"management\"],\n \
\ \"timestamp\": datetime.now().isoformat()\n}\n\nprint(f\"__OUTPUTS__ {json.dumps(result)}\"\
)\n"
depends_on:
- collect_campaign_outcomes
- analyze_performance
- detect_anomalies
- evaluate_model_performance
- generate_learning_insights
- update_ai_models
description: Create comprehensive monitoring and learning report
previous_node: update_ai_models
timeout_seconds: 120
- id: store_learning_data
name: Store Learning Data
type: script
script: "import json\nimport time\nfrom datetime import datetime\n\n# Simulate data\
\ storage\ntime.sleep(0.5)\n\nmonitoring_report = ${generate_monitoring_report.report}\n\
\n# Prepare data for storage\nlearning_record = {\n \"record_id\": f\"LEARN_{datetime.now().strftime('%Y%m%d%H%M%S')}\"\
,\n \"monitoring_period\": \"${monitoring_period}\",\n \"execution_date\"\
: datetime.now().isoformat(),\n \"report_id\": monitoring_report[\"report_id\"\
],\n \"summary_metrics\": monitoring_report[\"executive_summary\"],\n \"\
model_updates_applied\": monitoring_report[\"model_updates\"],\n \"learning_outcomes\"\
: {\n \"patterns_identified\": len(monitoring_report[\"detailed_analysis\"\
][\"learning_insights\"][\"successful_patterns\"]),\n \"anomalies_found\"\
: monitoring_report[\"detailed_analysis\"][\"anomaly_detection\"][\"anomalies_found\"\
],\n \"model_improvements\": monitoring_report[\"model_updates\"].get(\"\
total_models_updated\", 0)\n },\n \"storage_location\": \"ml_learning_database\"\
,\n \"retention_period\": \"2_years\",\n \"encryption_applied\": True,\n\
\ \"compliance_verified\": True\n}\n\nresult = {\n \"storage_completed\"\
: True,\n \"learning_record\": learning_record,\n \"storage_confirmation\"\
: f\"STORED_{learning_record['record_id']}\",\n \"timestamp\": datetime.now().isoformat()\n\
}\n\nprint(f\"__OUTPUTS__ {json.dumps(result)}\")\n"
depends_on:
- generate_monitoring_report
description: Persist learning data for future reference
previous_node: generate_monitoring_report
timeout_seconds: 60
inputs:
- name: monitoring_period
type: string
default: last_7_days
required: false
description: 'Period to monitor: last_24_hours, last_7_days, last_30_days'
- name: customer_ids
type: string
default: all
required: false
description: Comma-separated customer IDs or 'all'
- name: campaign_types
type: string
default: all
required: false
description: 'Campaign types to monitor: retention, engagement, upsell, all'
- name: enable_model_update
type: boolean
default: true
required: false
description: Enable AI model updates based on outcomes
labels:
product: relationship_manager
version: '1.0'
priority: medium
department: wealth_management
environment: production
workflow_type: monitoring
outputs:
anomalies:
type: object
source: detect_anomalies
description: Detected anomalies
model_updates:
type: object
source: update_ai_models
description: Applied model updates
model_evaluation:
type: object
source: evaluate_model_performance
description: AI model performance metrics
campaign_outcomes:
type: object
source: collect_campaign_outcomes
description: Campaign execution outcomes
learning_insights:
type: object
source: generate_learning_insights
description: Extracted learning insights
monitoring_report:
type: object
source: generate_monitoring_report.report
description: Comprehensive monitoring report
performance_analysis:
type: object
source: analyze_performance
description: Detailed performance analysis
version: '1.0'
metadata:
author: SMC AI Team
use_case: AI RM Continuous Learning
created_date: '2024-01-17'
execution_frequency: daily
compliance_framework: SEBI
namespace: smc_wealth_management
description: Monitors campaign outcomes and continuously improves AI models while
maintaining compliance
timeout_seconds: 1800