SMC AI RM Monitoring and Learning

Monitors campaign outcomes and continuously improves AI models while maintaining compliance

Back
Workflow Information

ID: smc_ai_rm_monitoring_learning

Namespace: smc_wealth_management

Version: 1.0

Created: 2025-07-17

Updated: 2025-07-17

Tasks: 8

Quick Actions
Manage Secrets
Inputs
Name Type Required Default
monitoring_period string Optional last_7_days
customer_ids string Optional all
campaign_types string Optional all
enable_model_update boolean Optional True
Outputs
Name Type Source
anomalies object Detected anomalies
model_updates object Applied model updates
model_evaluation object AI model performance metrics
campaign_outcomes object Campaign execution outcomes
learning_insights object Extracted learning insights
monitoring_report object Comprehensive monitoring report
performance_analysis object Detailed performance analysis
Tasks
collect_campaign_outcomes
script

Gather results from executed campaigns

analyze_performance
script

Deep analysis of campaign performance by segment

detect_anomalies
script

Identify unusual patterns in campaign outcomes

evaluate_model_performance
script

Assess AI model prediction accuracy

generate_learning_insights
script

Extract actionable insights for model improvement

update_ai_models
script

Apply learning insights to improve AI models

generate_monitoring_report
script

Create comprehensive monitoring and learning report

store_learning_data
script

Persist learning data for future reference

YAML Source
id: smc_ai_rm_monitoring_learning
name: SMC AI RM Monitoring and Learning
retry:
  retryOn:
  - TEMPORARY_FAILURE
  - TIMEOUT
  maxDelay: 30s
  maxAttempts: 2
  initialDelay: 5s
  backoffMultiplier: 2.0
tasks:
- id: collect_campaign_outcomes
  name: Collect Campaign Outcomes
  type: script
  script: "import json\nimport time\nimport random\nfrom datetime import datetime,\
    \ timedelta\n\n# Simulate data collection\ntime.sleep(1)\n\nmonitoring_period\
    \ = \"${monitoring_period}\"\ncampaign_types = \"${campaign_types}\"\n\n# Define\
    \ period\nperiod_days = {\n    \"last_24_hours\": 1,\n    \"last_7_days\": 7,\n\
    \    \"last_30_days\": 30\n}\n\ndays = period_days.get(monitoring_period, 7)\n\
    \n# Simulate campaign outcomes data\ncampaigns_executed = []\n\n# Generate sample\
    \ campaign outcomes\ncampaign_templates = {\n    \"retention\": {\n        \"\
    success_rate\": 0.65,\n        \"response_rate\": 0.75,\n        \"avg_response_time\"\
    : 4.2\n    },\n    \"engagement\": {\n        \"success_rate\": 0.72,\n      \
    \  \"response_rate\": 0.55,\n        \"avg_response_time\": 8.5\n    },\n    \"\
    upsell\": {\n        \"success_rate\": 0.42,\n        \"response_rate\": 0.35,\n\
    \        \"avg_response_time\": 48.0\n    }\n}\n\n# Generate campaigns for the\
    \ period\nnum_campaigns = random.randint(20, 100)\n\nfor i in range(num_campaigns):\n\
    \    campaign_type = random.choice([\"retention\", \"engagement\", \"upsell\"\
    ])\n    template = campaign_templates[campaign_type]\n    \n    # Simulate outcome\n\
    \    responded = random.random() < template[\"response_rate\"]\n    successful\
    \ = responded and (random.random() < template[\"success_rate\"])\n    \n    campaign\
    \ = {\n        \"campaign_id\": f\"CAMP_{random.randint(10000, 99999)}\",\n  \
    \      \"customer_id\": f\"CUST{random.randint(1, 999):03d}\",\n        \"campaign_type\"\
    : campaign_type,\n        \"execution_date\": (datetime.now() - timedelta(days=random.randint(0,\
    \ days))).strftime(\"%Y-%m-%d\"),\n        \"customer_segment\": random.choice([\"\
    PLATINUM\", \"GOLD\", \"SILVER\"]),\n        \"risk_level\": random.choice([\"\
    HIGH\", \"MEDIUM\", \"LOW\"]),\n        \"response_received\": responded,\n  \
    \      \"outcome\": \"SUCCESS\" if successful else \"FAILED\" if responded else\
    \ \"NO_RESPONSE\",\n        \"response_time_hours\": random.uniform(1, template[\"\
    avg_response_time\"]) if responded else None,\n        \"revenue_impact\": random.randint(5000,\
    \ 50000) if successful else 0,\n        \"compliance_maintained\": True\n    }\n\
    \    \n    campaigns_executed.append(campaign)\n\n# Calculate summary statistics\n\
    total_campaigns = len(campaigns_executed)\nsuccessful_campaigns = sum(1 for c\
    \ in campaigns_executed if c[\"outcome\"] == \"SUCCESS\")\nresponse_rate = sum(1\
    \ for c in campaigns_executed if c[\"response_received\"]) / total_campaigns\n\
    \nresult = {\n    \"collection_completed\": True,\n    \"monitoring_period\":\
    \ monitoring_period,\n    \"period_days\": days,\n    \"campaigns_analyzed\":\
    \ total_campaigns,\n    \"campaigns_data\": campaigns_executed,\n    \"summary\"\
    : {\n        \"total_campaigns\": total_campaigns,\n        \"successful_campaigns\"\
    : successful_campaigns,\n        \"success_rate\": round(successful_campaigns\
    \ / total_campaigns, 2),\n        \"response_rate\": round(response_rate, 2),\n\
    \        \"total_revenue_impact\": sum(c[\"revenue_impact\"] for c in campaigns_executed)\n\
    \    },\n    \"timestamp\": datetime.now().isoformat()\n}\n\nprint(f\"__OUTPUTS__\
    \ {json.dumps(result)}\")\n"
  description: Gather results from executed campaigns
  timeout_seconds: 180
- id: analyze_performance
  name: Analyze Campaign Performance
  type: script
  script: "import json\nimport time\nfrom datetime import datetime\nfrom collections\
    \ import defaultdict\n\n# Simulate analysis\ntime.sleep(1)\n\ncampaign_data =\
    \ ${collect_campaign_outcomes.campaigns_data}\n\n# Analyze by campaign type\n\
    type_analysis = defaultdict(lambda: {\n    \"total\": 0,\n    \"successful\":\
    \ 0,\n    \"responded\": 0,\n    \"revenue\": 0\n})\n\n# Analyze by customer segment\n\
    segment_analysis = defaultdict(lambda: {\n    \"total\": 0,\n    \"successful\"\
    : 0,\n    \"responded\": 0,\n    \"revenue\": 0\n})\n\n# Analyze by risk level\n\
    risk_analysis = defaultdict(lambda: {\n    \"total\": 0,\n    \"successful\":\
    \ 0,\n    \"responded\": 0,\n    \"revenue\": 0\n})\n\n# Process each campaign\n\
    for campaign in campaign_data:\n    # By type\n    type_stats = type_analysis[campaign[\"\
    campaign_type\"]]\n    type_stats[\"total\"] += 1\n    if campaign[\"outcome\"\
    ] == \"SUCCESS\":\n        type_stats[\"successful\"] += 1\n    if campaign[\"\
    response_received\"]:\n        type_stats[\"responded\"] += 1\n    type_stats[\"\
    revenue\"] += campaign[\"revenue_impact\"]\n    \n    # By segment\n    segment_stats\
    \ = segment_analysis[campaign[\"customer_segment\"]]\n    segment_stats[\"total\"\
    ] += 1\n    if campaign[\"outcome\"] == \"SUCCESS\":\n        segment_stats[\"\
    successful\"] += 1\n    if campaign[\"response_received\"]:\n        segment_stats[\"\
    responded\"] += 1\n    segment_stats[\"revenue\"] += campaign[\"revenue_impact\"\
    ]\n    \n    # By risk\n    risk_stats = risk_analysis[campaign[\"risk_level\"\
    ]]\n    risk_stats[\"total\"] += 1\n    if campaign[\"outcome\"] == \"SUCCESS\"\
    :\n        risk_stats[\"successful\"] += 1\n    if campaign[\"response_received\"\
    ]:\n        risk_stats[\"responded\"] += 1\n    risk_stats[\"revenue\"] += campaign[\"\
    revenue_impact\"]\n\n# Calculate rates\ndef calculate_rates(stats):\n    for key,\
    \ data in stats.items():\n        if data[\"total\"] > 0:\n            data[\"\
    success_rate\"] = round(data[\"successful\"] / data[\"total\"], 2)\n         \
    \   data[\"response_rate\"] = round(data[\"responded\"] / data[\"total\"], 2)\n\
    \            data[\"avg_revenue\"] = round(data[\"revenue\"] / data[\"total\"\
    ], 2)\n        else:\n            data[\"success_rate\"] = 0\n            data[\"\
    response_rate\"] = 0\n            data[\"avg_revenue\"] = 0\n    return dict(stats)\n\
    \n# Key insights\ninsights = []\n\n# Find best performing campaign type\nbest_type\
    \ = max(type_analysis.items(), key=lambda x: x[1][\"success_rate\"])\ninsights.append(f\"\
    {best_type[0].title()} campaigns show highest success rate at {best_type[1]['success_rate']*100}%\"\
    )\n\n# Find best performing segment\nbest_segment = max(segment_analysis.items(),\
    \ key=lambda x: x[1][\"revenue\"])\ninsights.append(f\"{best_segment[0]} segment\
    \ generates highest revenue: \u20B9{best_segment[1]['revenue']:,}\")\n\n# Risk\
    \ level effectiveness\nhigh_risk_success = risk_analysis[\"HIGH\"][\"success_rate\"\
    ] if \"HIGH\" in risk_analysis else 0\nif high_risk_success > 0.5:\n    insights.append(f\"\
    Retention strategies for high-risk customers showing {high_risk_success*100}%\
    \ success rate\")\n\nresult = {\n    \"analysis_completed\": True,\n    \"performance_by_type\"\
    : calculate_rates(type_analysis),\n    \"performance_by_segment\": calculate_rates(segment_analysis),\n\
    \    \"performance_by_risk\": calculate_rates(risk_analysis),\n    \"key_insights\"\
    : insights,\n    \"recommendations\": [\n        \"Focus on \" + best_type[0]\
    \ + \" campaigns for better ROI\",\n        \"Prioritize \" + best_segment[0]\
    \ + \" segment customers\",\n        \"Adjust risk thresholds based on outcome\
    \ patterns\"\n    ],\n    \"timestamp\": datetime.now().isoformat()\n}\n\nprint(f\"\
    __OUTPUTS__ {json.dumps(result)}\")\n"
  depends_on:
  - collect_campaign_outcomes
  description: Deep analysis of campaign performance by segment
  previous_node: collect_campaign_outcomes
  timeout_seconds: 120
- id: detect_anomalies
  name: Detect Anomalies
  type: script
  script: "import json\nimport time\nimport random\nfrom datetime import datetime\n\
    \n# Simulate anomaly detection\ntime.sleep(1)\n\nperformance_data = ${analyze_performance}\n\
    \nanomalies = []\n\n# Check for unusual success rates\nfor campaign_type, stats\
    \ in performance_data[\"performance_by_type\"].items():\n    if stats[\"success_rate\"\
    ] < 0.3:\n        anomalies.append({\n            \"type\": \"low_success_rate\"\
    ,\n            \"category\": \"campaign_type\",\n            \"identifier\": campaign_type,\n\
    \            \"metric\": \"success_rate\",\n            \"value\": stats[\"success_rate\"\
    ],\n            \"severity\": \"HIGH\",\n            \"description\": f\"{campaign_type}\
    \ campaigns showing unusually low success rate\"\n        })\n\n# Check for segment\
    \ anomalies\nfor segment, stats in performance_data[\"performance_by_segment\"\
    ].items():\n    if stats[\"response_rate\"] < 0.2:\n        anomalies.append({\n\
    \            \"type\": \"low_response_rate\",\n            \"category\": \"customer_segment\"\
    ,\n            \"identifier\": segment,\n            \"metric\": \"response_rate\"\
    ,\n            \"value\": stats[\"response_rate\"],\n            \"severity\"\
    : \"MEDIUM\",\n            \"description\": f\"{segment} segment showing poor\
    \ response rates\"\n        })\n\n# Check for risk level anomalies\nfor risk_level,\
    \ stats in performance_data[\"performance_by_risk\"].items():\n    if risk_level\
    \ == \"LOW\" and stats[\"success_rate\"] < 0.4:\n        anomalies.append({\n\
    \            \"type\": \"unexpected_pattern\",\n            \"category\": \"risk_level\"\
    ,\n            \"identifier\": risk_level,\n            \"metric\": \"success_rate\"\
    ,\n            \"value\": stats[\"success_rate\"],\n            \"severity\":\
    \ \"MEDIUM\",\n            \"description\": \"Low-risk customers showing poor\
    \ campaign outcomes\"\n        })\n\n# Generate corrective actions\ncorrective_actions\
    \ = []\nfor anomaly in anomalies:\n    if anomaly[\"type\"] == \"low_success_rate\"\
    :\n        corrective_actions.append({\n            \"anomaly_id\": anomaly[\"\
    identifier\"],\n            \"action\": \"Review and revise campaign content\"\
    ,\n            \"priority\": \"HIGH\"\n        })\n    elif anomaly[\"type\"]\
    \ == \"low_response_rate\":\n        corrective_actions.append({\n           \
    \ \"anomaly_id\": anomaly[\"identifier\"],\n            \"action\": \"Adjust communication\
    \ timing and channels\",\n            \"priority\": \"MEDIUM\"\n        })\n\n\
    result = {\n    \"anomaly_detection_completed\": True,\n    \"anomalies_found\"\
    : len(anomalies),\n    \"anomalies\": anomalies,\n    \"corrective_actions\":\
    \ corrective_actions,\n    \"alert_required\": len([a for a in anomalies if a[\"\
    severity\"] == \"HIGH\"]) > 0,\n    \"timestamp\": datetime.now().isoformat()\n\
    }\n\nprint(f\"__OUTPUTS__ {json.dumps(result)}\")\n"
  depends_on:
  - analyze_performance
  description: Identify unusual patterns in campaign outcomes
  previous_node: analyze_performance
  timeout_seconds: 120
- id: evaluate_model_performance
  name: Evaluate Model Performance
  type: script
  script: "import json\nimport time\nimport random\nfrom datetime import datetime\n\
    \n# Simulate model evaluation\ntime.sleep(1)\n\ncampaign_data = ${collect_campaign_outcomes.campaigns_data}\n\
    \n# Simulate model predictions vs actual outcomes\nmodel_metrics = {\n    \"risk_prediction\"\
    : {\n        \"total_predictions\": len(campaign_data),\n        \"correct_predictions\"\
    : 0,\n        \"precision\": 0,\n        \"recall\": 0,\n        \"f1_score\"\
    : 0\n    },\n    \"campaign_selection\": {\n        \"total_selections\": len(campaign_data),\n\
    \        \"optimal_selections\": 0,\n        \"selection_accuracy\": 0\n    },\n\
    \    \"response_prediction\": {\n        \"total_predictions\": len(campaign_data),\n\
    \        \"correct_predictions\": 0,\n        \"mae\": 0  # Mean Absolute Error\
    \ for response time\n    }\n}\n\n# Calculate risk prediction accuracy\nrisk_predictions_correct\
    \ = 0\nfor campaign in campaign_data:\n    # Simulate that HIGH risk correctly\
    \ predicted low success\n    if campaign[\"risk_level\"] == \"HIGH\" and campaign[\"\
    outcome\"] != \"SUCCESS\":\n        risk_predictions_correct += 1\n    elif campaign[\"\
    risk_level\"] == \"LOW\" and campaign[\"outcome\"] == \"SUCCESS\":\n        risk_predictions_correct\
    \ += 1\n    elif campaign[\"risk_level\"] == \"MEDIUM\":\n        # Medium risk\
    \ is correct 70% of the time\n        if random.random() < 0.7:\n            risk_predictions_correct\
    \ += 1\n\nmodel_metrics[\"risk_prediction\"][\"correct_predictions\"] = risk_predictions_correct\n\
    model_metrics[\"risk_prediction\"][\"accuracy\"] = round(risk_predictions_correct\
    \ / len(campaign_data), 2)\n\n# Calculate campaign selection accuracy\noptimal_selections\
    \ = sum(1 for c in campaign_data if c[\"outcome\"] == \"SUCCESS\")\nmodel_metrics[\"\
    campaign_selection\"][\"optimal_selections\"] = optimal_selections\nmodel_metrics[\"\
    campaign_selection\"][\"selection_accuracy\"] = round(optimal_selections / len(campaign_data),\
    \ 2)\n\n# Response prediction accuracy\nresponse_predictions_correct = sum(1 for\
    \ c in campaign_data if c[\"response_received\"])\nmodel_metrics[\"response_prediction\"\
    ][\"correct_predictions\"] = response_predictions_correct\nmodel_metrics[\"response_prediction\"\
    ][\"accuracy\"] = round(response_predictions_correct / len(campaign_data), 2)\n\
    \n# Model confidence scores\nconfidence_scores = {\n    \"overall_confidence\"\
    : round(random.uniform(0.82, 0.91), 2),\n    \"risk_assessment_confidence\": round(random.uniform(0.85,\
    \ 0.93), 2),\n    \"campaign_selection_confidence\": round(random.uniform(0.78,\
    \ 0.88), 2),\n    \"timing_prediction_confidence\": round(random.uniform(0.73,\
    \ 0.85), 2)\n}\n\n# Areas for improvement\nimprovement_areas = []\nif model_metrics[\"\
    risk_prediction\"][\"accuracy\"] < 0.8:\n    improvement_areas.append(\"Enhance\
    \ risk prediction algorithms\")\nif model_metrics[\"campaign_selection\"][\"selection_accuracy\"\
    ] < 0.6:\n    improvement_areas.append(\"Improve campaign selection logic\")\n\
    if confidence_scores[\"timing_prediction_confidence\"] < 0.8:\n    improvement_areas.append(\"\
    Better timing prediction models needed\")\n\nresult = {\n    \"evaluation_completed\"\
    : True,\n    \"model_metrics\": model_metrics,\n    \"confidence_scores\": confidence_scores,\n\
    \    \"improvement_areas\": improvement_areas,\n    \"model_version\": \"2.0\"\
    ,\n    \"evaluation_timestamp\": datetime.now().isoformat()\n}\n\nprint(f\"__OUTPUTS__\
    \ {json.dumps(result)}\")\n"
  depends_on:
  - collect_campaign_outcomes
  - analyze_performance
  description: Assess AI model prediction accuracy
  previous_node: detect_anomalies
  timeout_seconds: 120
- id: generate_learning_insights
  name: Generate Learning Insights
  type: script
  script: "import json\nimport time\nfrom datetime import datetime\n\n# Simulate insight\
    \ generation\ntime.sleep(1)\n\nperformance_analysis = ${analyze_performance}\n\
    anomalies = ${detect_anomalies}\nmodel_evaluation = ${evaluate_model_performance}\n\
    \n# Extract patterns from successful campaigns\nsuccessful_patterns = []\n\n#\
    \ From performance analysis\nfor campaign_type, stats in performance_analysis[\"\
    performance_by_type\"].items():\n    if stats[\"success_rate\"] > 0.6:\n     \
    \   successful_patterns.append({\n            \"pattern\": f\"{campaign_type}_high_success\"\
    ,\n            \"description\": f\"{campaign_type} campaigns show {stats['success_rate']*100}%\
    \ success rate\",\n            \"factors\": [\"campaign_type\", \"content_strategy\"\
    , \"timing\"],\n            \"confidence\": stats[\"success_rate\"]\n        })\n\
    \n# From segment analysis\nfor segment, stats in performance_analysis[\"performance_by_segment\"\
    ].items():\n    if stats[\"avg_revenue\"] > 20000:\n        successful_patterns.append({\n\
    \            \"pattern\": f\"{segment}_high_value\",\n            \"description\"\
    : f\"{segment} segment generates \u20B9{stats['avg_revenue']} average revenue\"\
    ,\n            \"factors\": [\"customer_segment\", \"product_affinity\", \"engagement_level\"\
    ],\n            \"confidence\": 0.85\n        })\n\n# Failed pattern analysis\n\
    failure_patterns = []\nfor anomaly in anomalies[\"anomalies\"]:\n    failure_patterns.append({\n\
    \        \"pattern\": anomaly[\"type\"],\n        \"description\": anomaly[\"\
    description\"],\n        \"impact\": anomaly[\"severity\"],\n        \"recommended_action\"\
    : \"Adjust model parameters for \" + anomaly[\"identifier\"]\n    })\n\n# Model\
    \ adjustment recommendations\nmodel_adjustments = []\n\nif model_evaluation[\"\
    model_metrics\"][\"risk_prediction\"][\"accuracy\"] < 0.85:\n    model_adjustments.append({\n\
    \        \"component\": \"risk_prediction_model\",\n        \"adjustment\": \"\
    Add more behavioral features\",\n        \"expected_improvement\": \"+5-8% accuracy\"\
    \n    })\n\nif len(failure_patterns) > 2:\n    model_adjustments.append({\n  \
    \      \"component\": \"campaign_selection_algorithm\",\n        \"adjustment\"\
    : \"Implement adaptive thresholds\",\n        \"expected_improvement\": \"+10%\
    \ success rate\"\n    })\n\n# Feature importance updates\nfeature_importance_updates\
    \ = {\n    \"login_frequency\": 0.25,  # Increased from 0.20\n    \"transaction_recency\"\
    : 0.30,  # Increased from 0.25\n    \"portfolio_concentration\": 0.20,  # Decreased\
    \ from 0.25\n    \"fund_movement\": 0.15,  # Same\n    \"product_usage\": 0.10\
    \  # Decreased from 0.15\n}\n\n# Learning summary\nlearning_summary = {\n    \"\
    total_patterns_identified\": len(successful_patterns) + len(failure_patterns),\n\
    \    \"success_patterns\": len(successful_patterns),\n    \"failure_patterns\"\
    : len(failure_patterns),\n    \"model_adjustments_recommended\": len(model_adjustments),\n\
    \    \"confidence_in_insights\": 0.88\n}\n\nresult = {\n    \"insights_generated\"\
    : True,\n    \"successful_patterns\": successful_patterns,\n    \"failure_patterns\"\
    : failure_patterns,\n    \"model_adjustments\": model_adjustments,\n    \"feature_importance_updates\"\
    : feature_importance_updates,\n    \"learning_summary\": learning_summary,\n \
    \   \"timestamp\": datetime.now().isoformat()\n}\n\nprint(f\"__OUTPUTS__ {json.dumps(result)}\"\
    )\n"
  depends_on:
  - analyze_performance
  - detect_anomalies
  - evaluate_model_performance
  description: Extract actionable insights for model improvement
  previous_node: evaluate_model_performance
  timeout_seconds: 120
- id: update_ai_models
  name: Update AI Models
  type: script
  script: "import json\nimport time\nimport random\nfrom datetime import datetime,\
    \ timedelta\n\n# Check if model update is enabled\nenable_update = ${enable_model_update}\n\
    \nif not enable_update:\n    result = {\n        \"update_skipped\": True,\n \
    \       \"reason\": \"Model update disabled\",\n        \"timestamp\": datetime.now().isoformat()\n\
    \    }\nelse:\n    # Simulate model update\n    time.sleep(2)\n    \n    learning_insights\
    \ = ${generate_learning_insights}\n    \n    # Models to update\n    models_updated\
    \ = []\n    \n    # Update risk prediction model\n    risk_model_update = {\n\
    \        \"model_name\": \"risk_prediction_model\",\n        \"version_before\"\
    : \"2.0\",\n        \"version_after\": \"2.1\",\n        \"changes_applied\":\
    \ [\n            \"Updated feature weights based on importance\",\n          \
    \  \"Added behavioral pattern recognition\",\n            \"Adjusted risk thresholds\"\
    \n        ],\n        \"expected_improvement\": \"+6% accuracy\",\n        \"\
    validation_score\": 0.89,\n        \"deployment_status\": \"STAGED\"\n    }\n\
    \    models_updated.append(risk_model_update)\n    \n    # Update campaign selection\
    \ model\n    campaign_model_update = {\n        \"model_name\": \"campaign_selection_model\"\
    ,\n        \"version_before\": \"1.8\",\n        \"version_after\": \"1.9\",\n\
    \        \"changes_applied\": [\n            \"Incorporated successful pattern\
    \ learnings\",\n            \"Added segment-specific strategies\",\n         \
    \   \"Improved timing predictions\"\n        ],\n        \"expected_improvement\"\
    : \"+8% success rate\",\n        \"validation_score\": 0.86,\n        \"deployment_status\"\
    : \"STAGED\"\n    }\n    models_updated.append(campaign_model_update)\n    \n\
    \    # Update response prediction model\n    response_model_update = {\n     \
    \   \"model_name\": \"response_prediction_model\",\n        \"version_before\"\
    : \"1.5\",\n        \"version_after\": \"1.6\",\n        \"changes_applied\":\
    \ [\n            \"Enhanced customer engagement scoring\",\n            \"Added\
    \ communication preference learning\",\n            \"Improved response time predictions\"\
    \n        ],\n        \"expected_improvement\": \"+12% response rate\",\n    \
    \    \"validation_score\": 0.84,\n        \"deployment_status\": \"STAGED\"\n\
    \    }\n    models_updated.append(response_model_update)\n    \n    # A/B testing\
    \ configuration\n    ab_testing_config = {\n        \"enabled\": True,\n     \
    \   \"test_percentage\": 20,  # 20% on new models\n        \"control_percentage\"\
    : 80,  # 80% on current models\n        \"duration_days\": 14,\n        \"success_metrics\"\
    : [\n            \"campaign_success_rate\",\n            \"customer_response_rate\"\
    ,\n            \"revenue_impact\"\n        ]\n    }\n    \n    # Rollback plan\n\
    \    rollback_plan = {\n        \"automatic_rollback_enabled\": True,\n      \
    \  \"rollback_triggers\": [\n            \"success_rate_drop > 10%\",\n      \
    \      \"error_rate > 5%\",\n            \"compliance_violation\"\n        ],\n\
    \        \"monitoring_period\": \"48_hours\",\n        \"approval_required\":\
    \ False\n    }\n    \n    result = {\n        \"update_completed\": True,\n  \
    \      \"models_updated\": models_updated,\n        \"total_models_updated\":\
    \ len(models_updated),\n        \"ab_testing_config\": ab_testing_config,\n  \
    \      \"rollback_plan\": rollback_plan,\n        \"deployment_schedule\": (datetime.now()\
    \ + timedelta(days=1)).isoformat(),\n        \"update_confidence\": 0.91,\n  \
    \      \"timestamp\": datetime.now().isoformat()\n    }\n\nprint(f\"__OUTPUTS__\
    \ {json.dumps(result)}\")\n"
  depends_on:
  - generate_learning_insights
  description: Apply learning insights to improve AI models
  previous_node: generate_learning_insights
  timeout_seconds: 180
- id: generate_monitoring_report
  name: Generate Monitoring Report
  type: script
  script: "import json\nimport time\nfrom datetime import datetime\n\n# Simulate report\
    \ generation\ntime.sleep(1)\n\n# Gather all results\ncampaign_outcomes = ${collect_campaign_outcomes.summary}\n\
    performance_analysis = ${analyze_performance}\nanomalies = ${detect_anomalies}\n\
    model_evaluation = ${evaluate_model_performance}\nlearning_insights = ${generate_learning_insights}\n\
    model_updates = ${update_ai_models}\n\n# Executive summary\nexecutive_summary\
    \ = {\n    \"monitoring_period\": \"${monitoring_period}\",\n    \"campaigns_analyzed\"\
    : campaign_outcomes[\"total_campaigns\"],\n    \"overall_success_rate\": f\"{campaign_outcomes['success_rate']*100}%\"\
    ,\n    \"total_revenue_impact\": f\"\u20B9{campaign_outcomes['total_revenue_impact']:,}\"\
    ,\n    \"anomalies_detected\": anomalies[\"anomalies_found\"],\n    \"model_accuracy\"\
    : f\"{model_evaluation['model_metrics']['risk_prediction']['accuracy']*100}%\"\
    ,\n    \"models_updated\": model_updates.get(\"total_models_updated\", 0)\n}\n\
    \n# Key findings\nkey_findings = [\n    f\"Campaign success rate: {campaign_outcomes['success_rate']*100}%\"\
    ,\n    f\"Customer response rate: {campaign_outcomes['response_rate']*100}%\"\
    ,\n    f\"Revenue generated: \u20B9{campaign_outcomes['total_revenue_impact']:,}\"\
    ,\n    f\"Model prediction accuracy: {model_evaluation['model_metrics']['risk_prediction']['accuracy']*100}%\"\
    \n]\n\n# Add performance insights\nkey_findings.extend(performance_analysis[\"\
    key_insights\"])\n\n# Recommendations\nrecommendations = {\n    \"immediate_actions\"\
    : [],\n    \"short_term\": [],\n    \"long_term\": []\n}\n\n# Immediate actions\
    \ for anomalies\nif anomalies[\"alert_required\"]:\n    recommendations[\"immediate_actions\"\
    ].append(\"Address high-severity anomalies in campaign performance\")\n\n# Short-term\
    \ recommendations\nrecommendations[\"short_term\"].extend(performance_analysis[\"\
    recommendations\"])\n\n# Long-term recommendations\nif learning_insights[\"model_adjustments\"\
    ]:\n    recommendations[\"long_term\"].append(\"Implement recommended model adjustments\"\
    )\n\n# Compliance summary\ncompliance_summary = {\n    \"compliance_maintained\"\
    : True,\n    \"violations_detected\": 0,\n    \"audit_trail_complete\": True,\n\
    \    \"data_privacy_maintained\": True,\n    \"sebi_guidelines_followed\": True\n\
    }\n\n# Next steps\nnext_steps = [\n    {\n        \"action\": \"Deploy updated\
    \ models to A/B testing\",\n        \"timeline\": \"Within 24 hours\",\n     \
    \   \"owner\": \"AI Team\"\n    },\n    {\n        \"action\": \"Monitor A/B test\
    \ results\",\n        \"timeline\": \"Next 14 days\",\n        \"owner\": \"Analytics\
    \ Team\"\n    },\n    {\n        \"action\": \"Review anomaly corrections\",\n\
    \        \"timeline\": \"Within 48 hours\",\n        \"owner\": \"Business Team\"\
    \n    }\n]\n\n# Full report\nreport = {\n    \"report_id\": f\"MON_REPORT_{datetime.now().strftime('%Y%m%d%H%M%S')}\"\
    ,\n    \"report_type\": \"AI_RM_MONITORING_LEARNING\",\n    \"generated_at\":\
    \ datetime.now().isoformat(),\n    \"executive_summary\": executive_summary,\n\
    \    \"key_findings\": key_findings,\n    \"detailed_analysis\": {\n        \"\
    campaign_performance\": performance_analysis,\n        \"anomaly_detection\":\
    \ anomalies,\n        \"model_evaluation\": model_evaluation,\n        \"learning_insights\"\
    : learning_insights\n    },\n    \"recommendations\": recommendations,\n    \"\
    compliance_summary\": compliance_summary,\n    \"model_updates\": model_updates,\n\
    \    \"next_steps\": next_steps,\n    \"report_confidence\": 0.92\n}\n\nresult\
    \ = {\n    \"report_generated\": True,\n    \"report\": report,\n    \"distribution_list\"\
    : [\"ai_team\", \"business_team\", \"compliance_team\", \"management\"],\n   \
    \ \"timestamp\": datetime.now().isoformat()\n}\n\nprint(f\"__OUTPUTS__ {json.dumps(result)}\"\
    )\n"
  depends_on:
  - collect_campaign_outcomes
  - analyze_performance
  - detect_anomalies
  - evaluate_model_performance
  - generate_learning_insights
  - update_ai_models
  description: Create comprehensive monitoring and learning report
  previous_node: update_ai_models
  timeout_seconds: 120
- id: store_learning_data
  name: Store Learning Data
  type: script
  script: "import json\nimport time\nfrom datetime import datetime\n\n# Simulate data\
    \ storage\ntime.sleep(0.5)\n\nmonitoring_report = ${generate_monitoring_report.report}\n\
    \n# Prepare data for storage\nlearning_record = {\n    \"record_id\": f\"LEARN_{datetime.now().strftime('%Y%m%d%H%M%S')}\"\
    ,\n    \"monitoring_period\": \"${monitoring_period}\",\n    \"execution_date\"\
    : datetime.now().isoformat(),\n    \"report_id\": monitoring_report[\"report_id\"\
    ],\n    \"summary_metrics\": monitoring_report[\"executive_summary\"],\n    \"\
    model_updates_applied\": monitoring_report[\"model_updates\"],\n    \"learning_outcomes\"\
    : {\n        \"patterns_identified\": len(monitoring_report[\"detailed_analysis\"\
    ][\"learning_insights\"][\"successful_patterns\"]),\n        \"anomalies_found\"\
    : monitoring_report[\"detailed_analysis\"][\"anomaly_detection\"][\"anomalies_found\"\
    ],\n        \"model_improvements\": monitoring_report[\"model_updates\"].get(\"\
    total_models_updated\", 0)\n    },\n    \"storage_location\": \"ml_learning_database\"\
    ,\n    \"retention_period\": \"2_years\",\n    \"encryption_applied\": True,\n\
    \    \"compliance_verified\": True\n}\n\nresult = {\n    \"storage_completed\"\
    : True,\n    \"learning_record\": learning_record,\n    \"storage_confirmation\"\
    : f\"STORED_{learning_record['record_id']}\",\n    \"timestamp\": datetime.now().isoformat()\n\
    }\n\nprint(f\"__OUTPUTS__ {json.dumps(result)}\")\n"
  depends_on:
  - generate_monitoring_report
  description: Persist learning data for future reference
  previous_node: generate_monitoring_report
  timeout_seconds: 60
inputs:
- name: monitoring_period
  type: string
  default: last_7_days
  required: false
  description: 'Period to monitor: last_24_hours, last_7_days, last_30_days'
- name: customer_ids
  type: string
  default: all
  required: false
  description: Comma-separated customer IDs or 'all'
- name: campaign_types
  type: string
  default: all
  required: false
  description: 'Campaign types to monitor: retention, engagement, upsell, all'
- name: enable_model_update
  type: boolean
  default: true
  required: false
  description: Enable AI model updates based on outcomes
labels:
  product: relationship_manager
  version: '1.0'
  priority: medium
  department: wealth_management
  environment: production
  workflow_type: monitoring
outputs:
  anomalies:
    type: object
    source: detect_anomalies
    description: Detected anomalies
  model_updates:
    type: object
    source: update_ai_models
    description: Applied model updates
  model_evaluation:
    type: object
    source: evaluate_model_performance
    description: AI model performance metrics
  campaign_outcomes:
    type: object
    source: collect_campaign_outcomes
    description: Campaign execution outcomes
  learning_insights:
    type: object
    source: generate_learning_insights
    description: Extracted learning insights
  monitoring_report:
    type: object
    source: generate_monitoring_report.report
    description: Comprehensive monitoring report
  performance_analysis:
    type: object
    source: analyze_performance
    description: Detailed performance analysis
version: '1.0'
metadata:
  author: SMC AI Team
  use_case: AI RM Continuous Learning
  created_date: '2024-01-17'
  execution_frequency: daily
  compliance_framework: SEBI
namespace: smc_wealth_management
description: Monitors campaign outcomes and continuously improves AI models while
  maintaining compliance
timeout_seconds: 1800
Execution ID Status Started Duration Actions
b85b93f0... COMPLETED 2025-07-17
09:40:53
N/A View
e79a1ac8... COMPLETED 2025-07-17
09:36:47
N/A View