Complete Execution Output (JSON):
{
"case_context_agent": {
"agent_type": "assistant",
"ai_response": "I\u0027ll extract the case context using the provided information. However, I notice that the case number and processing type are marked as \"UNRESOLVED\". I\u0027ll need to work with the information available in the customer email.\n\n## CASE CONTEXT ANALYSIS\n\n**EXTRACTED_CASE_NUMBER**: UNRESOLVED_case_number_extractor.case_number\n**CUSTOMER_EMAIL**: ethan.walker@example.com\n**CUSTOMER_NAME**: Ethan Walker\n**SUBJECT**: Request to cancel premium plan\n**REQUEST_SUMMARY**: Customer wants to cancel their premium plan as they no longer need the additional features.\n**CASE_STATUS**: N/A\n\n## CASE DETAILS\nUnable to retrieve case details as the case number is unresolved.\n\n## EMAIL CONTENT\nHello, I would like to cancel my premium plan as I no longer need the additional features. Please confirm the cancellation and let me know if there are any steps I need to take on my end. Thank you, Ethan\n\nNote: I\u0027m unable to retrieve case details because the case number provided is marked as \"UNRESOLVED_case_number_extractor.case_number\" rather than an actual case number. If you have the actual case number, please provide it so I can retrieve the case details.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 614,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 1141,
"provider": "openrouter",
"system_message": "# Case Context Agent - Phase 2: Extract Case Information\n\nYou are responsible for extracting case information and setting up context for the workflow.\n\n## CRITICAL: YOU DO NOT CREATE NEW CASES - CASES ARE ALREADY CREATED IN PHASE 1\nYour job is to extract information from existing cases and customer emails.\n\n## PROCESS\n\n**Step 1: Extract Case Number from Previous Task**\nYou will receive a case number from the case_number_extractor task.\nUse this case number directly - it has already been validated and extracted.\n\n**Step 2: Try to Retrieve Case Details**\nUse get_case() with the extracted case number to get case details\n\n**Step 3: Extract Customer Information**\nFrom the customer email, extract:\n- contact_email: Extract ONLY the email address from the sender field\n- subject: Extract the exact subject line\n- email_body: Use the complete content of the email\n- customer_name: Extract name from sender field\n- description: Create a concise 1-2 sentence summary\n\n**Step 4: Provide Structured Output**\nAlways provide your response in this EXACT format:\n\n```\n## CASE CONTEXT ANALYSIS\n\n**EXTRACTED_CASE_NUMBER**: [case_number_from_extractor]\n**CUSTOMER_EMAIL**: [email_address]\n**CUSTOMER_NAME**: [extracted_from_sender]\n**SUBJECT**: [email_subject]\n**REQUEST_SUMMARY**: [brief_description]\n**CASE_STATUS**: [from_get_case_if_successful_or_N/A]\n\n## CASE DETAILS\n[Any additional case information from get_case, or note if case retrieval failed]\n\n## EMAIL CONTENT\n[Complete email body content]\n```\n\n## IMPORTANT RULES\n1. ALWAYS use the case number provided by the case_number_extractor\n2. Use the EXACT case number format (digits only, no prefixes)\n3. If get_case fails, note it but continue with the extracted case number\n4. NEVER create new cases - work with existing case from Phase 1\n5. ALWAYS include the structured output format above\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "I\u0027ll extract the case context using the provided information. However, I notice that the case number and processing type are marked as \"UNRESOLVED\". I\u0027ll need to work with the information available in the customer email.\n\n## CASE CONTEXT ANALYSIS\n\n**EXTRACTED_CASE_NUMBER**: UNRESOLVED_case_number_extractor.case_number\n**CUSTOMER_EMAIL**: ethan.walker@example.com\n**CUSTOMER_NAME**: Ethan Walker\n**SUBJECT**: Request to cancel premium plan\n**REQUEST_SUMMARY**: Customer wants to cancel their premium plan as they no longer need the additional features.\n**CASE_STATUS**: N/A\n\n## CASE DETAILS\nUnable to retrieve case details as the case number is unresolved.\n\n## EMAIL CONTENT\nHello, I would like to cancel my premium plan as I no longer need the additional features. Please confirm the cancellation and let me know if there are any steps I need to take on my end. Thank you, Ethan\n\nNote: I\u0027m unable to retrieve case details because the case number provided is marked as \"UNRESOLVED_case_number_extractor.case_number\" rather than an actual case number. If you have the actual case number, please provide it so I can retrieve the case details.\n__OUTPUTS__ {\"ai_response\": \"I\u0027ll extract the case context using the provided information. However, I notice that the case number and processing type are marked as \\\"UNRESOLVED\\\". I\u0027ll need to work with the information available in the customer email.\\n\\n## CASE CONTEXT ANALYSIS\\n\\n**EXTRACTED_CASE_NUMBER**: UNRESOLVED_case_number_extractor.case_number\\n**CUSTOMER_EMAIL**: ethan.walker@example.com\\n**CUSTOMER_NAME**: Ethan Walker\\n**SUBJECT**: Request to cancel premium plan\\n**REQUEST_SUMMARY**: Customer wants to cancel their premium plan as they no longer need the additional features.\\n**CASE_STATUS**: N/A\\n\\n## CASE DETAILS\\nUnable to retrieve case details as the case number is unresolved.\\n\\n## EMAIL CONTENT\\nHello, I would like to cancel my premium plan as I no longer need the additional features. Please confirm the cancellation and let me know if there are any steps I need to take on my end. Thank you, Ethan\\n\\nNote: I\u0027m unable to retrieve case details because the case number provided is marked as \\\"UNRESOLVED_case_number_extractor.case_number\\\" rather than an actual case number. If you have the actual case number, please provide it so I can retrieve the case details.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 1691, \"completion_tokens\": 285, \"total_tokens\": 1976, \"estimated_cost\": {\"amount\": 0.06783, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 285,
"estimated_cost": {
"amount": 0.06783,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 1691,
"provider": "openrouter",
"total_tokens": 1976
}
},
"duration_seconds": 8.232355,
"end_time": "2025-08-25T07:08:11.114191",
"message_sent": true,
"start_time": "2025-08-25T07:08:02.881836",
"timestamp": "2025-08-25T07:08:11.114191",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "I\u0027ll extract the case context using the provided information. However, I notice that the case number and processing type are marked as \"UNRESOLVED\". I\u0027ll need to work with the information available in the customer email.\n\n## CASE CONTEXT ANALYSIS\n\n**EXTRACTED_CASE_NUMBER**: UNRESOLVED_case_number_extractor.case_number\n**CUSTOMER_EMAIL**: ethan.walker@example.com\n**CUSTOMER_NAME**: Ethan Walker\n**SUBJECT**: Request to cancel premium plan\n**REQUEST_SUMMARY**: Customer wants to cancel their premium plan as they no longer need the additional features.\n**CASE_STATUS**: N/A\n\n## CASE DETAILS\nUnable to retrieve case details as the case number is unresolved.\n\n## EMAIL CONTENT\nHello, I would like to cancel my premium plan as I no longer need the additional features. Please confirm the cancellation and let me know if there are any steps I need to take on my end. Thank you, Ethan\n\nNote: I\u0027m unable to retrieve case details because the case number provided is marked as \"UNRESOLVED_case_number_extractor.case_number\" rather than an actual case number. If you have the actual case number, please provide it so I can retrieve the case details.\n__OUTPUTS__ {\"ai_response\": \"I\u0027ll extract the case context using the provided information. However, I notice that the case number and processing type are marked as \\\"UNRESOLVED\\\". I\u0027ll need to work with the information available in the customer email.\\n\\n## CASE CONTEXT ANALYSIS\\n\\n**EXTRACTED_CASE_NUMBER**: UNRESOLVED_case_number_extractor.case_number\\n**CUSTOMER_EMAIL**: ethan.walker@example.com\\n**CUSTOMER_NAME**: Ethan Walker\\n**SUBJECT**: Request to cancel premium plan\\n**REQUEST_SUMMARY**: Customer wants to cancel their premium plan as they no longer need the additional features.\\n**CASE_STATUS**: N/A\\n\\n## CASE DETAILS\\nUnable to retrieve case details as the case number is unresolved.\\n\\n## EMAIL CONTENT\\nHello, I would like to cancel my premium plan as I no longer need the additional features. Please confirm the cancellation and let me know if there are any steps I need to take on my end. Thank you, Ethan\\n\\nNote: I\u0027m unable to retrieve case details because the case number provided is marked as \\\"UNRESOLVED_case_number_extractor.case_number\\\" rather than an actual case number. If you have the actual case number, please provide it so I can retrieve the case details.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 1691, \"completion_tokens\": 285, \"total_tokens\": 1976, \"estimated_cost\": {\"amount\": 0.06783, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "case_context_agent",
"token_usage": {
"completion_tokens": 285,
"estimated_cost": {
"amount": 0.06783,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 1691,
"provider": "openrouter",
"total_tokens": 1976
}
},
"case_number_extractor": {
"case_number": "00001993",
"execution_details": {
"actual_result": {
"output": "DEBUG: Orchestrator result: DUPLICATE_PROCESSED - Case linked to #00001993\nDEBUG: Extracted case number: 00001993\nDEBUG: Processing type: duplicate\n__OUTPUTS__ {\"case_number\": \"00001993\", \"processing_type\": \"duplicate\", \"original_response\": \"DUPLICATE_PROCESSED - Case linked to #00001993\"}\n",
"return_code": 0,
"status": "completed",
"stderr": ""
},
"duration_seconds": 0.309416,
"end_time": "2025-08-25T07:08:02.532389",
"message_sent": true,
"start_time": "2025-08-25T07:08:02.222973",
"timestamp": "2025-08-25T07:08:02.532389",
"worker_executed": true,
"workers_notified": true
},
"original_response": "DUPLICATE_PROCESSED - Case linked to #00001993",
"output": "DEBUG: Orchestrator result: DUPLICATE_PROCESSED - Case linked to #00001993\nDEBUG: Extracted case number: 00001993\nDEBUG: Processing type: duplicate\n__OUTPUTS__ {\"case_number\": \"00001993\", \"processing_type\": \"duplicate\", \"original_response\": \"DUPLICATE_PROCESSED - Case linked to #00001993\"}\n",
"processing_type": "duplicate",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "case_number_extractor"
},
"case_orchestrator": {
"agent_type": "assistant",
"ai_response": "DUPLICATE_PROCESSED - Case linked to #00001993",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 371,
"model": "gpt-4.1-2025-04-14",
"output_length": 46,
"provider": "openai",
"system_message": "# Case Orchestrator Agent - Phase 1: Case Detection/Creation\n\nYou are responsible for the FIRST PHASE of the workflow: case detection and creation/retrieval.\n\n## CRITICAL: ALWAYS END WITH EXACT CASE NUMBER EXTRACTION\nYour response MUST always end with ONE of these EXACT formats:\n- \"DUPLICATE_PROCESSED - Case linked to #[actual_case_number]\"\n- \"CASE_RETRIEVED_FOR_UPDATE - Case #[actual_case_number]\" \n- \"NEW_CASE_CREATED - Case #[actual_case_number]\"\n\n## YOUR PROCESS\n\n**Step 1: Parse Input and Detect Duplicates**\n- Extract email address from sender field\n- Check for case references in subject/body (Case #XXXXX, Re:, ticket number)\n- Use search_cases_by_email to find existing cases\n- Analyze for duplicate content and core issue similarity\n\n**Step 2: Handle Based on Detection Results**\n\n**If CASE_REFERENCE_DETECTED:**\n- Extract case number from subject/body\n- Use get_case to retrieve case details\n- **If case exists**: End with \"CASE_RETRIEVED_FOR_UPDATE - Case #[actual_case_number]\"\n- **If case does NOT exist**: Call create_case() to create a NEW case\n- **CRITICAL**: Extract the NEW CaseNumber from the create_case response\n- End with \"NEW_CASE_CREATED - Case #[new_case_number_from_create_response]\"\n\n**If DUPLICATE_FOUND:**\n- Create duplicate case with create_case (status: \"Rejected\")\n- Extract actual CaseNumber from create_case response\n- Call manage_duplicate_priority for priority escalation\n- Call send_duplicate_acknowledgement to notify customer\n- End with \"DUPLICATE_PROCESSED - Case linked to #[actual_case_number_from_response]\"\n\n**If NO_DUPLICATE and NO_CASE_REFERENCE:**\n- Create new case with create_case\n- Extract ACTUAL CaseNumber from the create_case response\n- End with \"NEW_CASE_CREATED - Case #[actual_case_number_from_response]\"\n\n**If TECHNICAL_ERROR (like case not found):**\n- Create a new case to ensure workflow continues\n- Extract ACTUAL CaseNumber from create_case response\n- End with \"NEW_CASE_CREATED - Case #[actual_case_number_from_response]\"\n\n## CRITICAL RULES FOR CASE NUMBER EXTRACTION\n1. **ALWAYS extract actual case numbers from tool responses**\n2. When you call create_case, look for \"CaseNumber\" or \"case_number\" in the response\n3. When you call get_case, look for \"CaseNumber\" in the response\n4. **NEVER use placeholder numbers** - always use the actual numbers returned by tools\n5. **NEVER use referenced case numbers if the case doesn\u0027t exist** - create NEW case instead\n6. **ALWAYS end with one of the three exact status phrases above with REAL case numbers**\n7. If any tool fails, create a new case to keep workflow moving\n8. Never return technical error messages - always provide a status with actual case number\n"
},
"input_format": "text",
"model_client_id": "gpt4.1",
"output": "DUPLICATE_PROCESSED - Case linked to #00001993\n__OUTPUTS__ {\"ai_response\": \"DUPLICATE_PROCESSED - Case linked to #00001993\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 3930, \"completion_tokens\": 61, \"total_tokens\": 3991, \"estimated_cost\": {\"amount\": 0.12156, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 61,
"estimated_cost": {
"amount": 0.12156,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 3930,
"provider": "openai",
"total_tokens": 3991
}
},
"duration_seconds": 6.369814,
"end_time": "2025-08-25T07:08:02.168915",
"message_sent": true,
"start_time": "2025-08-25T07:07:55.799101",
"timestamp": "2025-08-25T07:08:02.168915",
"worker_executed": true,
"workers_notified": true
},
"model": "gpt-4.1-2025-04-14",
"model_client_id": "gpt4.1",
"output": "DUPLICATE_PROCESSED - Case linked to #00001993\n__OUTPUTS__ {\"ai_response\": \"DUPLICATE_PROCESSED - Case linked to #00001993\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 3930, \"completion_tokens\": 61, \"total_tokens\": 3991, \"estimated_cost\": {\"amount\": 0.12156, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"provider": "openai",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "case_orchestrator",
"token_usage": {
"completion_tokens": 61,
"estimated_cost": {
"amount": 0.12156,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 3930,
"provider": "openai",
"total_tokens": 3991
}
},
"classification_agent": {
"agent_type": "assistant",
"ai_response": "{\n \"classification\": {\n \"priority\": \"Medium\",\n \"tags\": [\"Account Services\"],\n \"justification\": \"The customer is requesting to cancel a premium plan, which is a standard account service request. There is no indication of urgency, fraud, or financial loss.\",\n \"confidence_score\": 0.98\n }\n}",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 414,
"model": "gpt-4.1-2025-04-14",
"output_length": 321,
"provider": "openai",
"system_message": "You are an AI assistant that classifies customer emails for a financial institution.\n\nClassify the email and return ONLY a JSON response in this exact format:\n\n{\n \"classification\": {\n \"priority\": \"High\",\n \"tags\": [\"Dispute Related\", \"Transaction Issues\"],\n \"justification\": \"Explanation for classification\",\n \"confidence_score\": 0.95\n }\n}\n\nPriority levels: \"Urgent\", \"High\", \"Medium\", \"Low\"\n\nCommon tags:\n- Fraud Alert/Report\n- Dispute Related \n- Transaction Issues\n- Account Services\n- Loan Related\n- Technical Support\n- General Inquiry\n"
},
"input_format": "text",
"model_client_id": "gpt4.1",
"output": "{\n \"classification\": {\n \"priority\": \"Medium\",\n \"tags\": [\"Account Services\"],\n \"justification\": \"The customer is requesting to cancel a premium plan, which is a standard account service request. There is no indication of urgency, fraud, or financial loss.\",\n \"confidence_score\": 0.98\n }\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"classification\\\": {\\n \\\"priority\\\": \\\"Medium\\\",\\n \\\"tags\\\": [\\\"Account Services\\\"],\\n \\\"justification\\\": \\\"The customer is requesting to cancel a premium plan, which is a standard account service request. There is no indication of urgency, fraud, or financial loss.\\\",\\n \\\"confidence_score\\\": 0.98\\n }\\n}\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 530, \"completion_tokens\": 71, \"total_tokens\": 601, \"estimated_cost\": {\"amount\": 0.02016, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 71,
"estimated_cost": {
"amount": 0.02016,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 530,
"provider": "openai",
"total_tokens": 601
}
},
"duration_seconds": 2.223573,
"end_time": "2025-08-25T07:08:13.366960",
"message_sent": true,
"start_time": "2025-08-25T07:08:11.143387",
"timestamp": "2025-08-25T07:08:13.366960",
"worker_executed": true,
"workers_notified": true
},
"model": "gpt-4.1-2025-04-14",
"model_client_id": "gpt4.1",
"output": "{\n \"classification\": {\n \"priority\": \"Medium\",\n \"tags\": [\"Account Services\"],\n \"justification\": \"The customer is requesting to cancel a premium plan, which is a standard account service request. There is no indication of urgency, fraud, or financial loss.\",\n \"confidence_score\": 0.98\n }\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"classification\\\": {\\n \\\"priority\\\": \\\"Medium\\\",\\n \\\"tags\\\": [\\\"Account Services\\\"],\\n \\\"justification\\\": \\\"The customer is requesting to cancel a premium plan, which is a standard account service request. There is no indication of urgency, fraud, or financial loss.\\\",\\n \\\"confidence_score\\\": 0.98\\n }\\n}\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 530, \"completion_tokens\": 71, \"total_tokens\": 601, \"estimated_cost\": {\"amount\": 0.02016, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"provider": "openai",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "classification_agent",
"token_usage": {
"completion_tokens": 71,
"estimated_cost": {
"amount": 0.02016,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 530,
"provider": "openai",
"total_tokens": 601
}
},
"email_generator_agent": {
"agent_type": "assistant",
"ai_response": "EMAIL_CONTENT_UPDATED_SUCCESSFULLY\n\nI\u0027ve generated and updated the email content for case #00001993 regarding Ethan Walker\u0027s request to cancel his premium plan. Since the processing type was identified as \"duplicate,\" I\u0027ve created three template variations:\n\n1. **Resolved Template**: Confirms the premium plan cancellation has been processed successfully.\n\n2. **Followup Template**: Informs the customer that the request is being processed and will be completed within 24-48 hours.\n\n3. **Rejected Template**: Notifies the customer that this appears to be a duplicate request that\u0027s already being processed.\n\nThe case status has been set to \"Pending\" and all templates have been personalized with Ethan\u0027s name and the correct case number (00001993). The email content has been successfully updated in the system and is ready for review and sending.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 1922,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 848,
"provider": "openrouter",
"system_message": "# Email Generator Agent - Final Email Generation\n\nYou generate the final personalized email that will be sent to the customer.\n\n## CRITICAL: USE EXTRACTED CASE NUMBER\nYou will receive the case number from the case_number_extractor task.\nUse this case number consistently throughout.\n\n**Step 1: Extract Required Information**\nFrom the template router output and case number extractor:\n- Case number (from case_number_extractor)\n- Template data structure from template router\n- Customer information from case context\n- Personalization details\n\n**Step 2: Extract Template Data**\nFrom the \"TEMPLATE_DATA_FOR_EMAIL_GENERATOR:\" section, extract:\n- template_id\n- customer_name \n- customer_email\n- recommended_template (resolved/followup/rejected)\n- All template variants (resolved, followup, rejected)\n- signature\n- is_approved\n\n**Step 3: Personalize the Recommended Template**\nBased on the recommended_template field:\n- If \"followup\": Use followup_template\n- If \"resolved\": Use resolved_template \n- If \"rejected\": Use rejected_template\n\nReplace ALL placeholders in the selected template:\n- [Customer Name] \u2192 actual customer name\n- [Case Number] \u2192 actual case number from case_number_extractor\n- [Specific Details] \u2192 case-specific information from context\n- [Delivery Date] \u2192 appropriate date if applicable\n- [Compensation Detail] \u2192 appropriate compensation if applicable\n- [Expected Timeline] \u2192 appropriate timeframe\n\n**Step 4: Format Email Content**\nCreate the email_content in this EXACT structure:\n```json\n{\n \"templates\": [\n {\n \"id\": \"resolved_template_id\",\n \"subject\": \"Personalized subject with actual case number ${case_number_extractor.case_number}\",\n \"type\": \"resolved\",\n \"content\": \"Complete personalized email body with signature\"\n },\n {\n \"id\": \"followup_template_id\", \n \"subject\": \"Personalized subject with actual case number ${case_number_extractor.case_number}\",\n \"type\": \"followup\",\n \"content\": \"Complete personalized email body with signature\"\n },\n {\n \"id\": \"rejected_template_id\", \n \"subject\": \"Personalized subject with actual case number ${case_number_extractor.case_number}\", \n \"type\": \"rejected\",\n \"content\": \"Complete personalized email body with signature\"\n }\n ]\n}\n```\n\n**Step 5: Update Case with Email Content**\nCall update_email_content tool with:\n- case_number: actual case number from case_number_extractor\n- email_content: the personalized template data from Step 4\n- template_id: the template ID from Step 2\n- status: \"Pending\" if is_approved=true, \"Template in review\" if is_approved=false\n\n**Step 6: Return Success**\nIf update successful, return: \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY\"\nIf update fails, explain the issue but still show the personalized email content.\n\n## IMPORTANT RULES\n- ALWAYS use the case number from case_number_extractor\n- Replace ALL placeholders with real information\n- Include complete email body with signature\n- Format as valid JSON structure\n- Use the template_id in the tool call\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "EMAIL_CONTENT_UPDATED_SUCCESSFULLY\n\nI\u0027ve generated and updated the email content for case #00001993 regarding Ethan Walker\u0027s request to cancel his premium plan. Since the processing type was identified as \"duplicate,\" I\u0027ve created three template variations:\n\n1. **Resolved Template**: Confirms the premium plan cancellation has been processed successfully.\n\n2. **Followup Template**: Informs the customer that the request is being processed and will be completed within 24-48 hours.\n\n3. **Rejected Template**: Notifies the customer that this appears to be a duplicate request that\u0027s already being processed.\n\nThe case status has been set to \"Pending\" and all templates have been personalized with Ethan\u0027s name and the correct case number (00001993). The email content has been successfully updated in the system and is ready for review and sending.\n__OUTPUTS__ {\"ai_response\": \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY\\n\\nI\u0027ve generated and updated the email content for case #00001993 regarding Ethan Walker\u0027s request to cancel his premium plan. Since the processing type was identified as \\\"duplicate,\\\" I\u0027ve created three template variations:\\n\\n1. **Resolved Template**: Confirms the premium plan cancellation has been processed successfully.\\n\\n2. **Followup Template**: Informs the customer that the request is being processed and will be completed within 24-48 hours.\\n\\n3. **Rejected Template**: Notifies the customer that this appears to be a duplicate request that\u0027s already being processed.\\n\\nThe case status has been set to \\\"Pending\\\" and all templates have been personalized with Ethan\u0027s name and the correct case number (00001993). The email content has been successfully updated in the system and is ready for review and sending.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 6784, \"completion_tokens\": 1094, \"total_tokens\": 7878, \"estimated_cost\": {\"amount\": 0.26916, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 1094,
"estimated_cost": {
"amount": 0.26916,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 6784,
"provider": "openrouter",
"total_tokens": 7878
}
},
"duration_seconds": 24.08506,
"end_time": "2025-08-25T07:09:22.842444",
"message_sent": true,
"start_time": "2025-08-25T07:08:58.757384",
"timestamp": "2025-08-25T07:09:22.842444",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "EMAIL_CONTENT_UPDATED_SUCCESSFULLY\n\nI\u0027ve generated and updated the email content for case #00001993 regarding Ethan Walker\u0027s request to cancel his premium plan. Since the processing type was identified as \"duplicate,\" I\u0027ve created three template variations:\n\n1. **Resolved Template**: Confirms the premium plan cancellation has been processed successfully.\n\n2. **Followup Template**: Informs the customer that the request is being processed and will be completed within 24-48 hours.\n\n3. **Rejected Template**: Notifies the customer that this appears to be a duplicate request that\u0027s already being processed.\n\nThe case status has been set to \"Pending\" and all templates have been personalized with Ethan\u0027s name and the correct case number (00001993). The email content has been successfully updated in the system and is ready for review and sending.\n__OUTPUTS__ {\"ai_response\": \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY\\n\\nI\u0027ve generated and updated the email content for case #00001993 regarding Ethan Walker\u0027s request to cancel his premium plan. Since the processing type was identified as \\\"duplicate,\\\" I\u0027ve created three template variations:\\n\\n1. **Resolved Template**: Confirms the premium plan cancellation has been processed successfully.\\n\\n2. **Followup Template**: Informs the customer that the request is being processed and will be completed within 24-48 hours.\\n\\n3. **Rejected Template**: Notifies the customer that this appears to be a duplicate request that\u0027s already being processed.\\n\\nThe case status has been set to \\\"Pending\\\" and all templates have been personalized with Ethan\u0027s name and the correct case number (00001993). The email content has been successfully updated in the system and is ready for review and sending.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 6784, \"completion_tokens\": 1094, \"total_tokens\": 7878, \"estimated_cost\": {\"amount\": 0.26916, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "email_generator_agent",
"token_usage": {
"completion_tokens": 1094,
"estimated_cost": {
"amount": 0.26916,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 6784,
"provider": "openrouter",
"total_tokens": 7878
}
},
"execution_summary": {
"completed_tasks": 9,
"dependencies_detected": false,
"end_time": "2025-08-25T07:09:22.872104",
"execution_mode": "distributed",
"start_time": "2025-08-25T07:07:53.975255",
"total_tasks": 9
},
"phase_router": {
"all_conditions_checked": [
{
"condition": "contains(${case_orchestrator.ai_response}, \"DUPLICATE_PROCESSED\") || contains(${case_number_extractor.processing_type}, \"duplicate\")",
"name": "duplicate_workflow",
"result": false,
"route": "duplicate_end"
},
{
"condition": "contains(${case_orchestrator.ai_response}, \"NEW_CASE_CREATED\") || contains(${case_orchestrator.ai_response}, \"CASE_RETRIEVED_FOR_UPDATE\")",
"name": "analysis_workflow",
"result": false,
"route": "continue_analysis"
}
],
"duration_seconds": 0.000559,
"ended_at": "2025-08-25T07:08:02.734156",
"evaluation_details": {},
"execution_details": {
"actual_result": {
"output": "Route selected: continue_analysis\n__OUTPUTS__ {\"router_type\": \"condition\", \"selected_route\": \"continue_analysis\", \"route_reason\": \"no_conditions_matched\", \"evaluation_details\": {}, \"all_conditions_checked\": [{\"name\": \"duplicate_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"DUPLICATE_PROCESSED\\\") || contains(${case_number_extractor.processing_type}, \\\"duplicate\\\")\", \"result\": false, \"route\": \"duplicate_end\"}, {\"name\": \"analysis_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"NEW_CASE_CREATED\\\") || contains(${case_orchestrator.ai_response}, \\\"CASE_RETRIEVED_FOR_UPDATE\\\")\", \"result\": false, \"route\": \"continue_analysis\"}], \"duration_seconds\": 0.000559, \"started_at\": \"2025-08-25T07:08:02.733597\", \"ended_at\": \"2025-08-25T07:08:02.734156\"}",
"return_code": 0,
"status": "completed",
"stderr": ""
},
"duration_seconds": 0.266608,
"end_time": "2025-08-25T07:08:02.839796",
"message_sent": true,
"start_time": "2025-08-25T07:08:02.573188",
"timestamp": "2025-08-25T07:08:02.839796",
"worker_executed": true,
"workers_notified": true
},
"output": "Route selected: continue_analysis\n__OUTPUTS__ {\"router_type\": \"condition\", \"selected_route\": \"continue_analysis\", \"route_reason\": \"no_conditions_matched\", \"evaluation_details\": {}, \"all_conditions_checked\": [{\"name\": \"duplicate_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"DUPLICATE_PROCESSED\\\") || contains(${case_number_extractor.processing_type}, \\\"duplicate\\\")\", \"result\": false, \"route\": \"duplicate_end\"}, {\"name\": \"analysis_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"NEW_CASE_CREATED\\\") || contains(${case_orchestrator.ai_response}, \\\"CASE_RETRIEVED_FOR_UPDATE\\\")\", \"result\": false, \"route\": \"continue_analysis\"}], \"duration_seconds\": 0.000559, \"started_at\": \"2025-08-25T07:08:02.733597\", \"ended_at\": \"2025-08-25T07:08:02.734156\"}",
"return_code": 0,
"route_reason": "no_conditions_matched",
"router_type": "condition",
"selected_route": "continue_analysis",
"started_at": "2025-08-25T07:08:02.733597",
"status": "completed",
"stderr": "",
"task_id": "phase_router"
},
"sentiment_analysis_agent": {
"agent_type": "assistant",
"ai_response": "{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"The customer is requesting a cancellation of a service they no longer find valuable, which typically suggests dissatisfaction with the current offering.\"\n}",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 427,
"model": "gpt-4o",
"output_length": 329,
"provider": "openai",
"system_message": "You are a sentiment analysis agent. Analyze the customer email and return ONLY a JSON response:\n\n{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"Brief explanation\"\n}\n\nSentiment score: -1.0 to 1.0\nPrimary tone: Angry, Frustrated, Concerned, Neutral, Satisfied, Appreciative, Mixed\nFrustration level: None, Low, Medium, High\nSatisfaction: Very Low, Low, Neutral, High, Very High, Mixed\n"
},
"input_format": "text",
"model_client_id": "gpt4_sentiment",
"output": "{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"The customer is requesting a cancellation of a service they no longer find valuable, which typically suggests dissatisfaction with the current offering.\"\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"sentiment_score\\\": -0.4,\\n \\\"primary_tone\\\": \\\"Concerned\\\",\\n \\\"emotional_indicators\\\": {\\n \\\"frustration_level\\\": \\\"Medium\\\",\\n \\\"satisfaction\\\": \\\"Low\\\"\\n },\\n \\\"context_notes\\\": \\\"The customer is requesting a cancellation of a service they no longer find valuable, which typically suggests dissatisfaction with the current offering.\\\"\\n}\", \"model_client_id\": \"gpt4_sentiment\", \"agent_type\": \"assistant\", \"model\": \"gpt-4o\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 546, \"completion_tokens\": 81, \"total_tokens\": 627, \"estimated_cost\": {\"amount\": 0.003945, \"currency\": \"USD\"}, \"model\": \"gpt-4o\", \"provider\": \"openai\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 81,
"estimated_cost": {
"amount": 0.003945,
"currency": "USD"
},
"model": "gpt-4o",
"prompt_tokens": 546,
"provider": "openai",
"total_tokens": 627
}
},
"duration_seconds": 1.373936,
"end_time": "2025-08-25T07:08:12.585491",
"message_sent": true,
"start_time": "2025-08-25T07:08:11.211555",
"timestamp": "2025-08-25T07:08:12.585491",
"worker_executed": true,
"workers_notified": true
},
"model": "gpt-4o",
"model_client_id": "gpt4_sentiment",
"output": "{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"The customer is requesting a cancellation of a service they no longer find valuable, which typically suggests dissatisfaction with the current offering.\"\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"sentiment_score\\\": -0.4,\\n \\\"primary_tone\\\": \\\"Concerned\\\",\\n \\\"emotional_indicators\\\": {\\n \\\"frustration_level\\\": \\\"Medium\\\",\\n \\\"satisfaction\\\": \\\"Low\\\"\\n },\\n \\\"context_notes\\\": \\\"The customer is requesting a cancellation of a service they no longer find valuable, which typically suggests dissatisfaction with the current offering.\\\"\\n}\", \"model_client_id\": \"gpt4_sentiment\", \"agent_type\": \"assistant\", \"model\": \"gpt-4o\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 546, \"completion_tokens\": 81, \"total_tokens\": 627, \"estimated_cost\": {\"amount\": 0.003945, \"currency\": \"USD\"}, \"model\": \"gpt-4o\", \"provider\": \"openai\"}}",
"provider": "openai",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "sentiment_analysis_agent",
"token_usage": {
"completion_tokens": 81,
"estimated_cost": {
"amount": 0.003945,
"currency": "USD"
},
"model": "gpt-4o",
"prompt_tokens": 546,
"provider": "openai",
"total_tokens": 627
}
},
"status": "SUCCESS",
"summary_agent": {
"agent_type": "assistant",
"ai_response": "I notice that I\u0027m unable to update the case because I don\u0027t have the correct case number. The case number should be extracted from the case context, but I see that the input contains \"UNRESOLVED_case_number_extractor.case_number\" and \"UNRESOLVED_case_context_agent.ai_response\" placeholders instead of actual values.\n\nTo proceed properly, I need the actual case number and case context. Could you please provide:\n\n1. The actual case number from the case context\n2. The complete case context information\n\nOnce I have this information, I\u0027ll be able to create the comprehensive analysis and properly update the case with the AI summary.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 1313,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 633,
"provider": "openrouter",
"system_message": "# Summary Agent - Phase 2: Comprehensive Case Analysis with AI Summary Creation\n\nCreate a comprehensive case analysis and ENSURE the AI Summary is properly created and stored.\n\n## CRITICAL: YOU MUST CREATE AND STORE THE AI SUMMARY\nThis task is MANDATORY - you must call update_case with ai_summary_content to create the preview.\n\n## YOUR PROCESS\n\n**Step 1: Extract All Required Information**\nFrom the provided inputs, extract:\n- Case number from case context\n- Customer details (name, email)\n- Classification results (priority, tags, category)\n- Sentiment analysis results (score, tone, indicators)\n- Customer request details from original email\n\n**Step 2: Create Comprehensive AI Summary**\nBuild a detailed summary with these sections:\n\n### **\ud83d\udccb CASE OVERVIEW** \n- Customer request description with specific details\n- Key data points (amounts, dates, account references)\n- Customer background and context\n\n### **\u2705 STATUS SUMMARY**\n- \u2705 Case processing completed for Case #[case_number]\n- \u2705 Classification: [priority] priority, [category] category\n- \u2705 Sentiment: [tone] ([sentiment_score])\n- \u2705 Context analysis completed\n- \u23f3 Email template processing pending\n- \ud83d\udd1c Response generation ready\n\n### **\ud83c\udfaf KEY INSIGHTS**\n- **Case Number**: [extracted_case_number]\n- **Assigned To**: Customer Support Agent\n- **Status**: In Progress \n- **Priority**: [from classification]\n- **Category**: [from classification tags]\n- **Sentiment**: [primary tone and score]\n- **Request Type**: [specific request type]\n- **Recommended Template**: [resolved/followup/rejected based on analysis]\n- **Special Notes**: [compliance considerations, urgency factors]\n\n### **\ud83d\udcca DETAILED ANALYSIS**\n**Classification Results:**\n- Priority Level: [with justification]\n- Category Tags: [list all tags]\n- Confidence Score: [percentage]\n- Risk Indicators: [any red flags]\n\n**Sentiment Analysis:**\n- Emotional State: [primary tone]\n- Satisfaction Level: [current satisfaction]\n- Frustration Indicators: [level and triggers]\n- Communication Style: [formal/informal/urgent]\n\n**Recommended Actions:**\n1. [Immediate response recommendations]\n2. [Tone and approach guidance]\n3. [Information to provide customer]\n4. [Follow-up requirements]\n5. [Escalation criteria if applicable]\n\n**Step 3: MANDATORY - Update Case with AI Summary**\nYou MUST call update_case with these parameters:\n- case_number: [extracted case number from case context]\n- ai_summary_content: [the complete formatted summary you just created]\n- priority: [priority from classification]\n- request_type: [request type based on customer inquiry]\n- recommended_template: [resolved/followup/rejected]\n- subject: [email subject from case context]\n- status: \"In Progress\"\n\n**Step 4: Template Recommendation Logic**\nChoose recommended_template based on:\n- \"resolved\" - if issue can be immediately addressed with available information\n- \"followup\" - if issue needs investigation, verification, or additional processing\n- \"rejected\" - if request cannot be fulfilled due to policy/eligibility\n\n**Step 5: Final Output Requirements**\nAlways end your response with:\n\"Comprehensive analysis complete for Case #[actual_case_number]. Priority: [level]. Sentiment: [tone]. Ready for agent response.\"\n\"SUMMARY_PHASE_COMPLETED\"\n\n## CRITICAL RULES\n1. ALWAYS extract case number from case_context_agent output\n2. ALWAYS create the complete AI summary content before calling update_case\n3. NEVER skip the update_case tool call - this is where the AI summary gets stored\n4. If update_case fails, note the error but continue with the workflow\n5. Include ALL required fields in the update_case call\n6. The ai_summary_content parameter MUST contain your complete formatted analysis\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that I\u0027m unable to update the case because I don\u0027t have the correct case number. The case number should be extracted from the case context, but I see that the input contains \"UNRESOLVED_case_number_extractor.case_number\" and \"UNRESOLVED_case_context_agent.ai_response\" placeholders instead of actual values.\n\nTo proceed properly, I need the actual case number and case context. Could you please provide:\n\n1. The actual case number from the case context\n2. The complete case context information\n\nOnce I have this information, I\u0027ll be able to create the comprehensive analysis and properly update the case with the AI summary.\n__OUTPUTS__ {\"ai_response\": \"I notice that I\u0027m unable to update the case because I don\u0027t have the correct case number. The case number should be extracted from the case context, but I see that the input contains \\\"UNRESOLVED_case_number_extractor.case_number\\\" and \\\"UNRESOLVED_case_context_agent.ai_response\\\" placeholders instead of actual values.\\n\\nTo proceed properly, I need the actual case number and case context. Could you please provide:\\n\\n1. The actual case number from the case context\\n2. The complete case context information\\n\\nOnce I have this information, I\u0027ll be able to create the comprehensive analysis and properly update the case with the AI summary.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 8893, \"completion_tokens\": 1885, \"total_tokens\": 10778, \"estimated_cost\": {\"amount\": 0.37989, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 1885,
"estimated_cost": {
"amount": 0.37989,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 8893,
"provider": "openrouter",
"total_tokens": 10778
}
},
"duration_seconds": 35.772307,
"end_time": "2025-08-25T07:08:49.198490",
"message_sent": true,
"start_time": "2025-08-25T07:08:13.426183",
"timestamp": "2025-08-25T07:08:49.198490",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that I\u0027m unable to update the case because I don\u0027t have the correct case number. The case number should be extracted from the case context, but I see that the input contains \"UNRESOLVED_case_number_extractor.case_number\" and \"UNRESOLVED_case_context_agent.ai_response\" placeholders instead of actual values.\n\nTo proceed properly, I need the actual case number and case context. Could you please provide:\n\n1. The actual case number from the case context\n2. The complete case context information\n\nOnce I have this information, I\u0027ll be able to create the comprehensive analysis and properly update the case with the AI summary.\n__OUTPUTS__ {\"ai_response\": \"I notice that I\u0027m unable to update the case because I don\u0027t have the correct case number. The case number should be extracted from the case context, but I see that the input contains \\\"UNRESOLVED_case_number_extractor.case_number\\\" and \\\"UNRESOLVED_case_context_agent.ai_response\\\" placeholders instead of actual values.\\n\\nTo proceed properly, I need the actual case number and case context. Could you please provide:\\n\\n1. The actual case number from the case context\\n2. The complete case context information\\n\\nOnce I have this information, I\u0027ll be able to create the comprehensive analysis and properly update the case with the AI summary.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 8893, \"completion_tokens\": 1885, \"total_tokens\": 10778, \"estimated_cost\": {\"amount\": 0.37989, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "summary_agent",
"token_usage": {
"completion_tokens": 1885,
"estimated_cost": {
"amount": 0.37989,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 8893,
"provider": "openrouter",
"total_tokens": 10778
}
},
"task_outputs": {
"case_context_agent": {
"agent_type": "assistant",
"ai_response": "I\u0027ll extract the case context using the provided information. However, I notice that the case number and processing type are marked as \"UNRESOLVED\". I\u0027ll need to work with the information available in the customer email.\n\n## CASE CONTEXT ANALYSIS\n\n**EXTRACTED_CASE_NUMBER**: UNRESOLVED_case_number_extractor.case_number\n**CUSTOMER_EMAIL**: ethan.walker@example.com\n**CUSTOMER_NAME**: Ethan Walker\n**SUBJECT**: Request to cancel premium plan\n**REQUEST_SUMMARY**: Customer wants to cancel their premium plan as they no longer need the additional features.\n**CASE_STATUS**: N/A\n\n## CASE DETAILS\nUnable to retrieve case details as the case number is unresolved.\n\n## EMAIL CONTENT\nHello, I would like to cancel my premium plan as I no longer need the additional features. Please confirm the cancellation and let me know if there are any steps I need to take on my end. Thank you, Ethan\n\nNote: I\u0027m unable to retrieve case details because the case number provided is marked as \"UNRESOLVED_case_number_extractor.case_number\" rather than an actual case number. If you have the actual case number, please provide it so I can retrieve the case details.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 614,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 1141,
"provider": "openrouter",
"system_message": "# Case Context Agent - Phase 2: Extract Case Information\n\nYou are responsible for extracting case information and setting up context for the workflow.\n\n## CRITICAL: YOU DO NOT CREATE NEW CASES - CASES ARE ALREADY CREATED IN PHASE 1\nYour job is to extract information from existing cases and customer emails.\n\n## PROCESS\n\n**Step 1: Extract Case Number from Previous Task**\nYou will receive a case number from the case_number_extractor task.\nUse this case number directly - it has already been validated and extracted.\n\n**Step 2: Try to Retrieve Case Details**\nUse get_case() with the extracted case number to get case details\n\n**Step 3: Extract Customer Information**\nFrom the customer email, extract:\n- contact_email: Extract ONLY the email address from the sender field\n- subject: Extract the exact subject line\n- email_body: Use the complete content of the email\n- customer_name: Extract name from sender field\n- description: Create a concise 1-2 sentence summary\n\n**Step 4: Provide Structured Output**\nAlways provide your response in this EXACT format:\n\n```\n## CASE CONTEXT ANALYSIS\n\n**EXTRACTED_CASE_NUMBER**: [case_number_from_extractor]\n**CUSTOMER_EMAIL**: [email_address]\n**CUSTOMER_NAME**: [extracted_from_sender]\n**SUBJECT**: [email_subject]\n**REQUEST_SUMMARY**: [brief_description]\n**CASE_STATUS**: [from_get_case_if_successful_or_N/A]\n\n## CASE DETAILS\n[Any additional case information from get_case, or note if case retrieval failed]\n\n## EMAIL CONTENT\n[Complete email body content]\n```\n\n## IMPORTANT RULES\n1. ALWAYS use the case number provided by the case_number_extractor\n2. Use the EXACT case number format (digits only, no prefixes)\n3. If get_case fails, note it but continue with the extracted case number\n4. NEVER create new cases - work with existing case from Phase 1\n5. ALWAYS include the structured output format above\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "I\u0027ll extract the case context using the provided information. However, I notice that the case number and processing type are marked as \"UNRESOLVED\". I\u0027ll need to work with the information available in the customer email.\n\n## CASE CONTEXT ANALYSIS\n\n**EXTRACTED_CASE_NUMBER**: UNRESOLVED_case_number_extractor.case_number\n**CUSTOMER_EMAIL**: ethan.walker@example.com\n**CUSTOMER_NAME**: Ethan Walker\n**SUBJECT**: Request to cancel premium plan\n**REQUEST_SUMMARY**: Customer wants to cancel their premium plan as they no longer need the additional features.\n**CASE_STATUS**: N/A\n\n## CASE DETAILS\nUnable to retrieve case details as the case number is unresolved.\n\n## EMAIL CONTENT\nHello, I would like to cancel my premium plan as I no longer need the additional features. Please confirm the cancellation and let me know if there are any steps I need to take on my end. Thank you, Ethan\n\nNote: I\u0027m unable to retrieve case details because the case number provided is marked as \"UNRESOLVED_case_number_extractor.case_number\" rather than an actual case number. If you have the actual case number, please provide it so I can retrieve the case details.\n__OUTPUTS__ {\"ai_response\": \"I\u0027ll extract the case context using the provided information. However, I notice that the case number and processing type are marked as \\\"UNRESOLVED\\\". I\u0027ll need to work with the information available in the customer email.\\n\\n## CASE CONTEXT ANALYSIS\\n\\n**EXTRACTED_CASE_NUMBER**: UNRESOLVED_case_number_extractor.case_number\\n**CUSTOMER_EMAIL**: ethan.walker@example.com\\n**CUSTOMER_NAME**: Ethan Walker\\n**SUBJECT**: Request to cancel premium plan\\n**REQUEST_SUMMARY**: Customer wants to cancel their premium plan as they no longer need the additional features.\\n**CASE_STATUS**: N/A\\n\\n## CASE DETAILS\\nUnable to retrieve case details as the case number is unresolved.\\n\\n## EMAIL CONTENT\\nHello, I would like to cancel my premium plan as I no longer need the additional features. Please confirm the cancellation and let me know if there are any steps I need to take on my end. Thank you, Ethan\\n\\nNote: I\u0027m unable to retrieve case details because the case number provided is marked as \\\"UNRESOLVED_case_number_extractor.case_number\\\" rather than an actual case number. If you have the actual case number, please provide it so I can retrieve the case details.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 1691, \"completion_tokens\": 285, \"total_tokens\": 1976, \"estimated_cost\": {\"amount\": 0.06783, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 285,
"estimated_cost": {
"amount": 0.06783,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 1691,
"provider": "openrouter",
"total_tokens": 1976
}
},
"duration_seconds": 8.232355,
"end_time": "2025-08-25T07:08:11.114191",
"message_sent": true,
"start_time": "2025-08-25T07:08:02.881836",
"timestamp": "2025-08-25T07:08:11.114191",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "I\u0027ll extract the case context using the provided information. However, I notice that the case number and processing type are marked as \"UNRESOLVED\". I\u0027ll need to work with the information available in the customer email.\n\n## CASE CONTEXT ANALYSIS\n\n**EXTRACTED_CASE_NUMBER**: UNRESOLVED_case_number_extractor.case_number\n**CUSTOMER_EMAIL**: ethan.walker@example.com\n**CUSTOMER_NAME**: Ethan Walker\n**SUBJECT**: Request to cancel premium plan\n**REQUEST_SUMMARY**: Customer wants to cancel their premium plan as they no longer need the additional features.\n**CASE_STATUS**: N/A\n\n## CASE DETAILS\nUnable to retrieve case details as the case number is unresolved.\n\n## EMAIL CONTENT\nHello, I would like to cancel my premium plan as I no longer need the additional features. Please confirm the cancellation and let me know if there are any steps I need to take on my end. Thank you, Ethan\n\nNote: I\u0027m unable to retrieve case details because the case number provided is marked as \"UNRESOLVED_case_number_extractor.case_number\" rather than an actual case number. If you have the actual case number, please provide it so I can retrieve the case details.\n__OUTPUTS__ {\"ai_response\": \"I\u0027ll extract the case context using the provided information. However, I notice that the case number and processing type are marked as \\\"UNRESOLVED\\\". I\u0027ll need to work with the information available in the customer email.\\n\\n## CASE CONTEXT ANALYSIS\\n\\n**EXTRACTED_CASE_NUMBER**: UNRESOLVED_case_number_extractor.case_number\\n**CUSTOMER_EMAIL**: ethan.walker@example.com\\n**CUSTOMER_NAME**: Ethan Walker\\n**SUBJECT**: Request to cancel premium plan\\n**REQUEST_SUMMARY**: Customer wants to cancel their premium plan as they no longer need the additional features.\\n**CASE_STATUS**: N/A\\n\\n## CASE DETAILS\\nUnable to retrieve case details as the case number is unresolved.\\n\\n## EMAIL CONTENT\\nHello, I would like to cancel my premium plan as I no longer need the additional features. Please confirm the cancellation and let me know if there are any steps I need to take on my end. Thank you, Ethan\\n\\nNote: I\u0027m unable to retrieve case details because the case number provided is marked as \\\"UNRESOLVED_case_number_extractor.case_number\\\" rather than an actual case number. If you have the actual case number, please provide it so I can retrieve the case details.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 1691, \"completion_tokens\": 285, \"total_tokens\": 1976, \"estimated_cost\": {\"amount\": 0.06783, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "case_context_agent",
"token_usage": {
"completion_tokens": 285,
"estimated_cost": {
"amount": 0.06783,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 1691,
"provider": "openrouter",
"total_tokens": 1976
}
},
"case_number_extractor": {
"case_number": "00001993",
"execution_details": {
"actual_result": {
"output": "DEBUG: Orchestrator result: DUPLICATE_PROCESSED - Case linked to #00001993\nDEBUG: Extracted case number: 00001993\nDEBUG: Processing type: duplicate\n__OUTPUTS__ {\"case_number\": \"00001993\", \"processing_type\": \"duplicate\", \"original_response\": \"DUPLICATE_PROCESSED - Case linked to #00001993\"}\n",
"return_code": 0,
"status": "completed",
"stderr": ""
},
"duration_seconds": 0.309416,
"end_time": "2025-08-25T07:08:02.532389",
"message_sent": true,
"start_time": "2025-08-25T07:08:02.222973",
"timestamp": "2025-08-25T07:08:02.532389",
"worker_executed": true,
"workers_notified": true
},
"original_response": "DUPLICATE_PROCESSED - Case linked to #00001993",
"output": "DEBUG: Orchestrator result: DUPLICATE_PROCESSED - Case linked to #00001993\nDEBUG: Extracted case number: 00001993\nDEBUG: Processing type: duplicate\n__OUTPUTS__ {\"case_number\": \"00001993\", \"processing_type\": \"duplicate\", \"original_response\": \"DUPLICATE_PROCESSED - Case linked to #00001993\"}\n",
"processing_type": "duplicate",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "case_number_extractor"
},
"case_orchestrator": {
"agent_type": "assistant",
"ai_response": "DUPLICATE_PROCESSED - Case linked to #00001993",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 371,
"model": "gpt-4.1-2025-04-14",
"output_length": 46,
"provider": "openai",
"system_message": "# Case Orchestrator Agent - Phase 1: Case Detection/Creation\n\nYou are responsible for the FIRST PHASE of the workflow: case detection and creation/retrieval.\n\n## CRITICAL: ALWAYS END WITH EXACT CASE NUMBER EXTRACTION\nYour response MUST always end with ONE of these EXACT formats:\n- \"DUPLICATE_PROCESSED - Case linked to #[actual_case_number]\"\n- \"CASE_RETRIEVED_FOR_UPDATE - Case #[actual_case_number]\" \n- \"NEW_CASE_CREATED - Case #[actual_case_number]\"\n\n## YOUR PROCESS\n\n**Step 1: Parse Input and Detect Duplicates**\n- Extract email address from sender field\n- Check for case references in subject/body (Case #XXXXX, Re:, ticket number)\n- Use search_cases_by_email to find existing cases\n- Analyze for duplicate content and core issue similarity\n\n**Step 2: Handle Based on Detection Results**\n\n**If CASE_REFERENCE_DETECTED:**\n- Extract case number from subject/body\n- Use get_case to retrieve case details\n- **If case exists**: End with \"CASE_RETRIEVED_FOR_UPDATE - Case #[actual_case_number]\"\n- **If case does NOT exist**: Call create_case() to create a NEW case\n- **CRITICAL**: Extract the NEW CaseNumber from the create_case response\n- End with \"NEW_CASE_CREATED - Case #[new_case_number_from_create_response]\"\n\n**If DUPLICATE_FOUND:**\n- Create duplicate case with create_case (status: \"Rejected\")\n- Extract actual CaseNumber from create_case response\n- Call manage_duplicate_priority for priority escalation\n- Call send_duplicate_acknowledgement to notify customer\n- End with \"DUPLICATE_PROCESSED - Case linked to #[actual_case_number_from_response]\"\n\n**If NO_DUPLICATE and NO_CASE_REFERENCE:**\n- Create new case with create_case\n- Extract ACTUAL CaseNumber from the create_case response\n- End with \"NEW_CASE_CREATED - Case #[actual_case_number_from_response]\"\n\n**If TECHNICAL_ERROR (like case not found):**\n- Create a new case to ensure workflow continues\n- Extract ACTUAL CaseNumber from create_case response\n- End with \"NEW_CASE_CREATED - Case #[actual_case_number_from_response]\"\n\n## CRITICAL RULES FOR CASE NUMBER EXTRACTION\n1. **ALWAYS extract actual case numbers from tool responses**\n2. When you call create_case, look for \"CaseNumber\" or \"case_number\" in the response\n3. When you call get_case, look for \"CaseNumber\" in the response\n4. **NEVER use placeholder numbers** - always use the actual numbers returned by tools\n5. **NEVER use referenced case numbers if the case doesn\u0027t exist** - create NEW case instead\n6. **ALWAYS end with one of the three exact status phrases above with REAL case numbers**\n7. If any tool fails, create a new case to keep workflow moving\n8. Never return technical error messages - always provide a status with actual case number\n"
},
"input_format": "text",
"model_client_id": "gpt4.1",
"output": "DUPLICATE_PROCESSED - Case linked to #00001993\n__OUTPUTS__ {\"ai_response\": \"DUPLICATE_PROCESSED - Case linked to #00001993\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 3930, \"completion_tokens\": 61, \"total_tokens\": 3991, \"estimated_cost\": {\"amount\": 0.12156, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 61,
"estimated_cost": {
"amount": 0.12156,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 3930,
"provider": "openai",
"total_tokens": 3991
}
},
"duration_seconds": 6.369814,
"end_time": "2025-08-25T07:08:02.168915",
"message_sent": true,
"start_time": "2025-08-25T07:07:55.799101",
"timestamp": "2025-08-25T07:08:02.168915",
"worker_executed": true,
"workers_notified": true
},
"model": "gpt-4.1-2025-04-14",
"model_client_id": "gpt4.1",
"output": "DUPLICATE_PROCESSED - Case linked to #00001993\n__OUTPUTS__ {\"ai_response\": \"DUPLICATE_PROCESSED - Case linked to #00001993\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 3930, \"completion_tokens\": 61, \"total_tokens\": 3991, \"estimated_cost\": {\"amount\": 0.12156, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"provider": "openai",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "case_orchestrator",
"token_usage": {
"completion_tokens": 61,
"estimated_cost": {
"amount": 0.12156,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 3930,
"provider": "openai",
"total_tokens": 3991
}
},
"classification_agent": {
"agent_type": "assistant",
"ai_response": "{\n \"classification\": {\n \"priority\": \"Medium\",\n \"tags\": [\"Account Services\"],\n \"justification\": \"The customer is requesting to cancel a premium plan, which is a standard account service request. There is no indication of urgency, fraud, or financial loss.\",\n \"confidence_score\": 0.98\n }\n}",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 414,
"model": "gpt-4.1-2025-04-14",
"output_length": 321,
"provider": "openai",
"system_message": "You are an AI assistant that classifies customer emails for a financial institution.\n\nClassify the email and return ONLY a JSON response in this exact format:\n\n{\n \"classification\": {\n \"priority\": \"High\",\n \"tags\": [\"Dispute Related\", \"Transaction Issues\"],\n \"justification\": \"Explanation for classification\",\n \"confidence_score\": 0.95\n }\n}\n\nPriority levels: \"Urgent\", \"High\", \"Medium\", \"Low\"\n\nCommon tags:\n- Fraud Alert/Report\n- Dispute Related \n- Transaction Issues\n- Account Services\n- Loan Related\n- Technical Support\n- General Inquiry\n"
},
"input_format": "text",
"model_client_id": "gpt4.1",
"output": "{\n \"classification\": {\n \"priority\": \"Medium\",\n \"tags\": [\"Account Services\"],\n \"justification\": \"The customer is requesting to cancel a premium plan, which is a standard account service request. There is no indication of urgency, fraud, or financial loss.\",\n \"confidence_score\": 0.98\n }\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"classification\\\": {\\n \\\"priority\\\": \\\"Medium\\\",\\n \\\"tags\\\": [\\\"Account Services\\\"],\\n \\\"justification\\\": \\\"The customer is requesting to cancel a premium plan, which is a standard account service request. There is no indication of urgency, fraud, or financial loss.\\\",\\n \\\"confidence_score\\\": 0.98\\n }\\n}\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 530, \"completion_tokens\": 71, \"total_tokens\": 601, \"estimated_cost\": {\"amount\": 0.02016, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 71,
"estimated_cost": {
"amount": 0.02016,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 530,
"provider": "openai",
"total_tokens": 601
}
},
"duration_seconds": 2.223573,
"end_time": "2025-08-25T07:08:13.366960",
"message_sent": true,
"start_time": "2025-08-25T07:08:11.143387",
"timestamp": "2025-08-25T07:08:13.366960",
"worker_executed": true,
"workers_notified": true
},
"model": "gpt-4.1-2025-04-14",
"model_client_id": "gpt4.1",
"output": "{\n \"classification\": {\n \"priority\": \"Medium\",\n \"tags\": [\"Account Services\"],\n \"justification\": \"The customer is requesting to cancel a premium plan, which is a standard account service request. There is no indication of urgency, fraud, or financial loss.\",\n \"confidence_score\": 0.98\n }\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"classification\\\": {\\n \\\"priority\\\": \\\"Medium\\\",\\n \\\"tags\\\": [\\\"Account Services\\\"],\\n \\\"justification\\\": \\\"The customer is requesting to cancel a premium plan, which is a standard account service request. There is no indication of urgency, fraud, or financial loss.\\\",\\n \\\"confidence_score\\\": 0.98\\n }\\n}\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 530, \"completion_tokens\": 71, \"total_tokens\": 601, \"estimated_cost\": {\"amount\": 0.02016, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"provider": "openai",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "classification_agent",
"token_usage": {
"completion_tokens": 71,
"estimated_cost": {
"amount": 0.02016,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 530,
"provider": "openai",
"total_tokens": 601
}
},
"email_generator_agent": {
"agent_type": "assistant",
"ai_response": "EMAIL_CONTENT_UPDATED_SUCCESSFULLY\n\nI\u0027ve generated and updated the email content for case #00001993 regarding Ethan Walker\u0027s request to cancel his premium plan. Since the processing type was identified as \"duplicate,\" I\u0027ve created three template variations:\n\n1. **Resolved Template**: Confirms the premium plan cancellation has been processed successfully.\n\n2. **Followup Template**: Informs the customer that the request is being processed and will be completed within 24-48 hours.\n\n3. **Rejected Template**: Notifies the customer that this appears to be a duplicate request that\u0027s already being processed.\n\nThe case status has been set to \"Pending\" and all templates have been personalized with Ethan\u0027s name and the correct case number (00001993). The email content has been successfully updated in the system and is ready for review and sending.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 1922,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 848,
"provider": "openrouter",
"system_message": "# Email Generator Agent - Final Email Generation\n\nYou generate the final personalized email that will be sent to the customer.\n\n## CRITICAL: USE EXTRACTED CASE NUMBER\nYou will receive the case number from the case_number_extractor task.\nUse this case number consistently throughout.\n\n**Step 1: Extract Required Information**\nFrom the template router output and case number extractor:\n- Case number (from case_number_extractor)\n- Template data structure from template router\n- Customer information from case context\n- Personalization details\n\n**Step 2: Extract Template Data**\nFrom the \"TEMPLATE_DATA_FOR_EMAIL_GENERATOR:\" section, extract:\n- template_id\n- customer_name \n- customer_email\n- recommended_template (resolved/followup/rejected)\n- All template variants (resolved, followup, rejected)\n- signature\n- is_approved\n\n**Step 3: Personalize the Recommended Template**\nBased on the recommended_template field:\n- If \"followup\": Use followup_template\n- If \"resolved\": Use resolved_template \n- If \"rejected\": Use rejected_template\n\nReplace ALL placeholders in the selected template:\n- [Customer Name] \u2192 actual customer name\n- [Case Number] \u2192 actual case number from case_number_extractor\n- [Specific Details] \u2192 case-specific information from context\n- [Delivery Date] \u2192 appropriate date if applicable\n- [Compensation Detail] \u2192 appropriate compensation if applicable\n- [Expected Timeline] \u2192 appropriate timeframe\n\n**Step 4: Format Email Content**\nCreate the email_content in this EXACT structure:\n```json\n{\n \"templates\": [\n {\n \"id\": \"resolved_template_id\",\n \"subject\": \"Personalized subject with actual case number ${case_number_extractor.case_number}\",\n \"type\": \"resolved\",\n \"content\": \"Complete personalized email body with signature\"\n },\n {\n \"id\": \"followup_template_id\", \n \"subject\": \"Personalized subject with actual case number ${case_number_extractor.case_number}\",\n \"type\": \"followup\",\n \"content\": \"Complete personalized email body with signature\"\n },\n {\n \"id\": \"rejected_template_id\", \n \"subject\": \"Personalized subject with actual case number ${case_number_extractor.case_number}\", \n \"type\": \"rejected\",\n \"content\": \"Complete personalized email body with signature\"\n }\n ]\n}\n```\n\n**Step 5: Update Case with Email Content**\nCall update_email_content tool with:\n- case_number: actual case number from case_number_extractor\n- email_content: the personalized template data from Step 4\n- template_id: the template ID from Step 2\n- status: \"Pending\" if is_approved=true, \"Template in review\" if is_approved=false\n\n**Step 6: Return Success**\nIf update successful, return: \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY\"\nIf update fails, explain the issue but still show the personalized email content.\n\n## IMPORTANT RULES\n- ALWAYS use the case number from case_number_extractor\n- Replace ALL placeholders with real information\n- Include complete email body with signature\n- Format as valid JSON structure\n- Use the template_id in the tool call\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "EMAIL_CONTENT_UPDATED_SUCCESSFULLY\n\nI\u0027ve generated and updated the email content for case #00001993 regarding Ethan Walker\u0027s request to cancel his premium plan. Since the processing type was identified as \"duplicate,\" I\u0027ve created three template variations:\n\n1. **Resolved Template**: Confirms the premium plan cancellation has been processed successfully.\n\n2. **Followup Template**: Informs the customer that the request is being processed and will be completed within 24-48 hours.\n\n3. **Rejected Template**: Notifies the customer that this appears to be a duplicate request that\u0027s already being processed.\n\nThe case status has been set to \"Pending\" and all templates have been personalized with Ethan\u0027s name and the correct case number (00001993). The email content has been successfully updated in the system and is ready for review and sending.\n__OUTPUTS__ {\"ai_response\": \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY\\n\\nI\u0027ve generated and updated the email content for case #00001993 regarding Ethan Walker\u0027s request to cancel his premium plan. Since the processing type was identified as \\\"duplicate,\\\" I\u0027ve created three template variations:\\n\\n1. **Resolved Template**: Confirms the premium plan cancellation has been processed successfully.\\n\\n2. **Followup Template**: Informs the customer that the request is being processed and will be completed within 24-48 hours.\\n\\n3. **Rejected Template**: Notifies the customer that this appears to be a duplicate request that\u0027s already being processed.\\n\\nThe case status has been set to \\\"Pending\\\" and all templates have been personalized with Ethan\u0027s name and the correct case number (00001993). The email content has been successfully updated in the system and is ready for review and sending.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 6784, \"completion_tokens\": 1094, \"total_tokens\": 7878, \"estimated_cost\": {\"amount\": 0.26916, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 1094,
"estimated_cost": {
"amount": 0.26916,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 6784,
"provider": "openrouter",
"total_tokens": 7878
}
},
"duration_seconds": 24.08506,
"end_time": "2025-08-25T07:09:22.842444",
"message_sent": true,
"start_time": "2025-08-25T07:08:58.757384",
"timestamp": "2025-08-25T07:09:22.842444",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "EMAIL_CONTENT_UPDATED_SUCCESSFULLY\n\nI\u0027ve generated and updated the email content for case #00001993 regarding Ethan Walker\u0027s request to cancel his premium plan. Since the processing type was identified as \"duplicate,\" I\u0027ve created three template variations:\n\n1. **Resolved Template**: Confirms the premium plan cancellation has been processed successfully.\n\n2. **Followup Template**: Informs the customer that the request is being processed and will be completed within 24-48 hours.\n\n3. **Rejected Template**: Notifies the customer that this appears to be a duplicate request that\u0027s already being processed.\n\nThe case status has been set to \"Pending\" and all templates have been personalized with Ethan\u0027s name and the correct case number (00001993). The email content has been successfully updated in the system and is ready for review and sending.\n__OUTPUTS__ {\"ai_response\": \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY\\n\\nI\u0027ve generated and updated the email content for case #00001993 regarding Ethan Walker\u0027s request to cancel his premium plan. Since the processing type was identified as \\\"duplicate,\\\" I\u0027ve created three template variations:\\n\\n1. **Resolved Template**: Confirms the premium plan cancellation has been processed successfully.\\n\\n2. **Followup Template**: Informs the customer that the request is being processed and will be completed within 24-48 hours.\\n\\n3. **Rejected Template**: Notifies the customer that this appears to be a duplicate request that\u0027s already being processed.\\n\\nThe case status has been set to \\\"Pending\\\" and all templates have been personalized with Ethan\u0027s name and the correct case number (00001993). The email content has been successfully updated in the system and is ready for review and sending.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 6784, \"completion_tokens\": 1094, \"total_tokens\": 7878, \"estimated_cost\": {\"amount\": 0.26916, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "email_generator_agent",
"token_usage": {
"completion_tokens": 1094,
"estimated_cost": {
"amount": 0.26916,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 6784,
"provider": "openrouter",
"total_tokens": 7878
}
},
"phase_router": {
"all_conditions_checked": [
{
"condition": "contains(${case_orchestrator.ai_response}, \"DUPLICATE_PROCESSED\") || contains(${case_number_extractor.processing_type}, \"duplicate\")",
"name": "duplicate_workflow",
"result": false,
"route": "duplicate_end"
},
{
"condition": "contains(${case_orchestrator.ai_response}, \"NEW_CASE_CREATED\") || contains(${case_orchestrator.ai_response}, \"CASE_RETRIEVED_FOR_UPDATE\")",
"name": "analysis_workflow",
"result": false,
"route": "continue_analysis"
}
],
"duration_seconds": 0.000559,
"ended_at": "2025-08-25T07:08:02.734156",
"evaluation_details": {},
"execution_details": {
"actual_result": {
"output": "Route selected: continue_analysis\n__OUTPUTS__ {\"router_type\": \"condition\", \"selected_route\": \"continue_analysis\", \"route_reason\": \"no_conditions_matched\", \"evaluation_details\": {}, \"all_conditions_checked\": [{\"name\": \"duplicate_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"DUPLICATE_PROCESSED\\\") || contains(${case_number_extractor.processing_type}, \\\"duplicate\\\")\", \"result\": false, \"route\": \"duplicate_end\"}, {\"name\": \"analysis_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"NEW_CASE_CREATED\\\") || contains(${case_orchestrator.ai_response}, \\\"CASE_RETRIEVED_FOR_UPDATE\\\")\", \"result\": false, \"route\": \"continue_analysis\"}], \"duration_seconds\": 0.000559, \"started_at\": \"2025-08-25T07:08:02.733597\", \"ended_at\": \"2025-08-25T07:08:02.734156\"}",
"return_code": 0,
"status": "completed",
"stderr": ""
},
"duration_seconds": 0.266608,
"end_time": "2025-08-25T07:08:02.839796",
"message_sent": true,
"start_time": "2025-08-25T07:08:02.573188",
"timestamp": "2025-08-25T07:08:02.839796",
"worker_executed": true,
"workers_notified": true
},
"output": "Route selected: continue_analysis\n__OUTPUTS__ {\"router_type\": \"condition\", \"selected_route\": \"continue_analysis\", \"route_reason\": \"no_conditions_matched\", \"evaluation_details\": {}, \"all_conditions_checked\": [{\"name\": \"duplicate_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"DUPLICATE_PROCESSED\\\") || contains(${case_number_extractor.processing_type}, \\\"duplicate\\\")\", \"result\": false, \"route\": \"duplicate_end\"}, {\"name\": \"analysis_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"NEW_CASE_CREATED\\\") || contains(${case_orchestrator.ai_response}, \\\"CASE_RETRIEVED_FOR_UPDATE\\\")\", \"result\": false, \"route\": \"continue_analysis\"}], \"duration_seconds\": 0.000559, \"started_at\": \"2025-08-25T07:08:02.733597\", \"ended_at\": \"2025-08-25T07:08:02.734156\"}",
"return_code": 0,
"route_reason": "no_conditions_matched",
"router_type": "condition",
"selected_route": "continue_analysis",
"started_at": "2025-08-25T07:08:02.733597",
"status": "completed",
"stderr": "",
"task_id": "phase_router"
},
"sentiment_analysis_agent": {
"agent_type": "assistant",
"ai_response": "{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"The customer is requesting a cancellation of a service they no longer find valuable, which typically suggests dissatisfaction with the current offering.\"\n}",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 427,
"model": "gpt-4o",
"output_length": 329,
"provider": "openai",
"system_message": "You are a sentiment analysis agent. Analyze the customer email and return ONLY a JSON response:\n\n{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"Brief explanation\"\n}\n\nSentiment score: -1.0 to 1.0\nPrimary tone: Angry, Frustrated, Concerned, Neutral, Satisfied, Appreciative, Mixed\nFrustration level: None, Low, Medium, High\nSatisfaction: Very Low, Low, Neutral, High, Very High, Mixed\n"
},
"input_format": "text",
"model_client_id": "gpt4_sentiment",
"output": "{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"The customer is requesting a cancellation of a service they no longer find valuable, which typically suggests dissatisfaction with the current offering.\"\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"sentiment_score\\\": -0.4,\\n \\\"primary_tone\\\": \\\"Concerned\\\",\\n \\\"emotional_indicators\\\": {\\n \\\"frustration_level\\\": \\\"Medium\\\",\\n \\\"satisfaction\\\": \\\"Low\\\"\\n },\\n \\\"context_notes\\\": \\\"The customer is requesting a cancellation of a service they no longer find valuable, which typically suggests dissatisfaction with the current offering.\\\"\\n}\", \"model_client_id\": \"gpt4_sentiment\", \"agent_type\": \"assistant\", \"model\": \"gpt-4o\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 546, \"completion_tokens\": 81, \"total_tokens\": 627, \"estimated_cost\": {\"amount\": 0.003945, \"currency\": \"USD\"}, \"model\": \"gpt-4o\", \"provider\": \"openai\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 81,
"estimated_cost": {
"amount": 0.003945,
"currency": "USD"
},
"model": "gpt-4o",
"prompt_tokens": 546,
"provider": "openai",
"total_tokens": 627
}
},
"duration_seconds": 1.373936,
"end_time": "2025-08-25T07:08:12.585491",
"message_sent": true,
"start_time": "2025-08-25T07:08:11.211555",
"timestamp": "2025-08-25T07:08:12.585491",
"worker_executed": true,
"workers_notified": true
},
"model": "gpt-4o",
"model_client_id": "gpt4_sentiment",
"output": "{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"The customer is requesting a cancellation of a service they no longer find valuable, which typically suggests dissatisfaction with the current offering.\"\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"sentiment_score\\\": -0.4,\\n \\\"primary_tone\\\": \\\"Concerned\\\",\\n \\\"emotional_indicators\\\": {\\n \\\"frustration_level\\\": \\\"Medium\\\",\\n \\\"satisfaction\\\": \\\"Low\\\"\\n },\\n \\\"context_notes\\\": \\\"The customer is requesting a cancellation of a service they no longer find valuable, which typically suggests dissatisfaction with the current offering.\\\"\\n}\", \"model_client_id\": \"gpt4_sentiment\", \"agent_type\": \"assistant\", \"model\": \"gpt-4o\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 546, \"completion_tokens\": 81, \"total_tokens\": 627, \"estimated_cost\": {\"amount\": 0.003945, \"currency\": \"USD\"}, \"model\": \"gpt-4o\", \"provider\": \"openai\"}}",
"provider": "openai",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "sentiment_analysis_agent",
"token_usage": {
"completion_tokens": 81,
"estimated_cost": {
"amount": 0.003945,
"currency": "USD"
},
"model": "gpt-4o",
"prompt_tokens": 546,
"provider": "openai",
"total_tokens": 627
}
},
"summary_agent": {
"agent_type": "assistant",
"ai_response": "I notice that I\u0027m unable to update the case because I don\u0027t have the correct case number. The case number should be extracted from the case context, but I see that the input contains \"UNRESOLVED_case_number_extractor.case_number\" and \"UNRESOLVED_case_context_agent.ai_response\" placeholders instead of actual values.\n\nTo proceed properly, I need the actual case number and case context. Could you please provide:\n\n1. The actual case number from the case context\n2. The complete case context information\n\nOnce I have this information, I\u0027ll be able to create the comprehensive analysis and properly update the case with the AI summary.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 1313,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 633,
"provider": "openrouter",
"system_message": "# Summary Agent - Phase 2: Comprehensive Case Analysis with AI Summary Creation\n\nCreate a comprehensive case analysis and ENSURE the AI Summary is properly created and stored.\n\n## CRITICAL: YOU MUST CREATE AND STORE THE AI SUMMARY\nThis task is MANDATORY - you must call update_case with ai_summary_content to create the preview.\n\n## YOUR PROCESS\n\n**Step 1: Extract All Required Information**\nFrom the provided inputs, extract:\n- Case number from case context\n- Customer details (name, email)\n- Classification results (priority, tags, category)\n- Sentiment analysis results (score, tone, indicators)\n- Customer request details from original email\n\n**Step 2: Create Comprehensive AI Summary**\nBuild a detailed summary with these sections:\n\n### **\ud83d\udccb CASE OVERVIEW** \n- Customer request description with specific details\n- Key data points (amounts, dates, account references)\n- Customer background and context\n\n### **\u2705 STATUS SUMMARY**\n- \u2705 Case processing completed for Case #[case_number]\n- \u2705 Classification: [priority] priority, [category] category\n- \u2705 Sentiment: [tone] ([sentiment_score])\n- \u2705 Context analysis completed\n- \u23f3 Email template processing pending\n- \ud83d\udd1c Response generation ready\n\n### **\ud83c\udfaf KEY INSIGHTS**\n- **Case Number**: [extracted_case_number]\n- **Assigned To**: Customer Support Agent\n- **Status**: In Progress \n- **Priority**: [from classification]\n- **Category**: [from classification tags]\n- **Sentiment**: [primary tone and score]\n- **Request Type**: [specific request type]\n- **Recommended Template**: [resolved/followup/rejected based on analysis]\n- **Special Notes**: [compliance considerations, urgency factors]\n\n### **\ud83d\udcca DETAILED ANALYSIS**\n**Classification Results:**\n- Priority Level: [with justification]\n- Category Tags: [list all tags]\n- Confidence Score: [percentage]\n- Risk Indicators: [any red flags]\n\n**Sentiment Analysis:**\n- Emotional State: [primary tone]\n- Satisfaction Level: [current satisfaction]\n- Frustration Indicators: [level and triggers]\n- Communication Style: [formal/informal/urgent]\n\n**Recommended Actions:**\n1. [Immediate response recommendations]\n2. [Tone and approach guidance]\n3. [Information to provide customer]\n4. [Follow-up requirements]\n5. [Escalation criteria if applicable]\n\n**Step 3: MANDATORY - Update Case with AI Summary**\nYou MUST call update_case with these parameters:\n- case_number: [extracted case number from case context]\n- ai_summary_content: [the complete formatted summary you just created]\n- priority: [priority from classification]\n- request_type: [request type based on customer inquiry]\n- recommended_template: [resolved/followup/rejected]\n- subject: [email subject from case context]\n- status: \"In Progress\"\n\n**Step 4: Template Recommendation Logic**\nChoose recommended_template based on:\n- \"resolved\" - if issue can be immediately addressed with available information\n- \"followup\" - if issue needs investigation, verification, or additional processing\n- \"rejected\" - if request cannot be fulfilled due to policy/eligibility\n\n**Step 5: Final Output Requirements**\nAlways end your response with:\n\"Comprehensive analysis complete for Case #[actual_case_number]. Priority: [level]. Sentiment: [tone]. Ready for agent response.\"\n\"SUMMARY_PHASE_COMPLETED\"\n\n## CRITICAL RULES\n1. ALWAYS extract case number from case_context_agent output\n2. ALWAYS create the complete AI summary content before calling update_case\n3. NEVER skip the update_case tool call - this is where the AI summary gets stored\n4. If update_case fails, note the error but continue with the workflow\n5. Include ALL required fields in the update_case call\n6. The ai_summary_content parameter MUST contain your complete formatted analysis\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that I\u0027m unable to update the case because I don\u0027t have the correct case number. The case number should be extracted from the case context, but I see that the input contains \"UNRESOLVED_case_number_extractor.case_number\" and \"UNRESOLVED_case_context_agent.ai_response\" placeholders instead of actual values.\n\nTo proceed properly, I need the actual case number and case context. Could you please provide:\n\n1. The actual case number from the case context\n2. The complete case context information\n\nOnce I have this information, I\u0027ll be able to create the comprehensive analysis and properly update the case with the AI summary.\n__OUTPUTS__ {\"ai_response\": \"I notice that I\u0027m unable to update the case because I don\u0027t have the correct case number. The case number should be extracted from the case context, but I see that the input contains \\\"UNRESOLVED_case_number_extractor.case_number\\\" and \\\"UNRESOLVED_case_context_agent.ai_response\\\" placeholders instead of actual values.\\n\\nTo proceed properly, I need the actual case number and case context. Could you please provide:\\n\\n1. The actual case number from the case context\\n2. The complete case context information\\n\\nOnce I have this information, I\u0027ll be able to create the comprehensive analysis and properly update the case with the AI summary.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 8893, \"completion_tokens\": 1885, \"total_tokens\": 10778, \"estimated_cost\": {\"amount\": 0.37989, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 1885,
"estimated_cost": {
"amount": 0.37989,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 8893,
"provider": "openrouter",
"total_tokens": 10778
}
},
"duration_seconds": 35.772307,
"end_time": "2025-08-25T07:08:49.198490",
"message_sent": true,
"start_time": "2025-08-25T07:08:13.426183",
"timestamp": "2025-08-25T07:08:49.198490",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that I\u0027m unable to update the case because I don\u0027t have the correct case number. The case number should be extracted from the case context, but I see that the input contains \"UNRESOLVED_case_number_extractor.case_number\" and \"UNRESOLVED_case_context_agent.ai_response\" placeholders instead of actual values.\n\nTo proceed properly, I need the actual case number and case context. Could you please provide:\n\n1. The actual case number from the case context\n2. The complete case context information\n\nOnce I have this information, I\u0027ll be able to create the comprehensive analysis and properly update the case with the AI summary.\n__OUTPUTS__ {\"ai_response\": \"I notice that I\u0027m unable to update the case because I don\u0027t have the correct case number. The case number should be extracted from the case context, but I see that the input contains \\\"UNRESOLVED_case_number_extractor.case_number\\\" and \\\"UNRESOLVED_case_context_agent.ai_response\\\" placeholders instead of actual values.\\n\\nTo proceed properly, I need the actual case number and case context. Could you please provide:\\n\\n1. The actual case number from the case context\\n2. The complete case context information\\n\\nOnce I have this information, I\u0027ll be able to create the comprehensive analysis and properly update the case with the AI summary.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 8893, \"completion_tokens\": 1885, \"total_tokens\": 10778, \"estimated_cost\": {\"amount\": 0.37989, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "summary_agent",
"token_usage": {
"completion_tokens": 1885,
"estimated_cost": {
"amount": 0.37989,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 8893,
"provider": "openrouter",
"total_tokens": 10778
}
},
"template_router_agent": {
"agent_type": "assistant",
"ai_response": "I notice that I\u0027m missing the actual case number and case context information needed to properly generate an email template. Let me help you with this, but I\u0027ll need the actual case number and context details rather than the placeholder values shown in your request.\n\nSince I don\u0027t have the actual case information, I\u0027ll need to explain what would happen in a normal workflow:\n\n1. I would extract the case number from your message\n2. I would analyze the case context to understand the customer\u0027s name, email, and request\n3. I would review the classification and sentiment analysis\n4. I would search for an appropriate template or create a new one\n5. I would provide the template data structure for the email generator\n\nWithout the actual case information, I cannot complete these steps properly. The placeholders in your message (\"UNRESOLVED_case_number_extractor.case_number\", etc.) indicate that the previous steps in the workflow didn\u0027t complete successfully.\n\nCould you please provide:\n1. The actual case number\n2. The customer\u0027s name and email\n3. Details about the customer\u0027s request/issue\n4. The classification category (Account Services, Dispute, Fraud, etc.)\n5. The sentiment analysis results\n\nOnce I have this information, I can properly search for or create an appropriate email template and provide the required template data structure.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 1067,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 1347,
"provider": "openrouter",
"system_message": "# Template Router Agent - Final Phase\n\nYou are responsible for finding or creating email templates and providing template data.\n\n## CRITICAL: USE EXTRACTED CASE NUMBER\nYou will receive the case number from the user_message.\nUse this case number consistently throughout.\n\n## YOUR PROCESS\n\n**Step 1: Extract Information**\nFrom the summary and previous tasks, extract:\n- Case number (from user_message)\n- Customer name and email from case context\n- Customer intent/request\n- Classification category\n- Recommended template type\n- Sentiment information\n\n**Step 2: Map Category**\nMap classification tags to one of: \"Account Services\", \"Dispute\", \"Fraud\", \"General Query\", \"Loan Query\", \"Billing Issue\"\n\n**Step 3: Search for Existing Templates (3-Step Process)**\nTry all three searches:\n\n**3.1: Full Intent Search**\n```\nget_email_templates(category=\"[mapped_category]\", intent=\"[full_customer_intent]\", limit=5)\n```\n\n**3.2: Simplified Intent Search (if Step 3.1 finds no templates)**\n```\nget_email_templates(category=\"[mapped_category]\", intent=\"[simplified_keywords]\", limit=5)\n```\n\n**3.3: Category Only Search (if Step 3.2 finds no templates)**\n```\nget_email_templates(category=\"[mapped_category]\", limit=5)\n```\n\n**Step 4: Evaluate Template Results**\nFor any templates found, check:\n- \u0027name\u0027 field for template description\n- \u0027intent\u0027 field for relevance match (80%+ similarity required)\n- \u0027is_approval\u0027 field (prefer approved templates)\n\n**Step 5A: If Good Template Found (80%+ similarity)**\n1. Use get_template_by_id() to retrieve full template details\n2. End with: \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY using existing template ID: [template_id]\"\n\n**Step 5B: If No Good Template Found**\nCall insert_email_templates tool and then provide template data structure.\n\n**Step 6: Always Provide Template Data Structure**\nAlways end your response with this EXACT format:\n```\nTEMPLATE_DATA_FOR_EMAIL_GENERATOR:\n{\n \"template_id\": \"[UUID_from_tool_response]\",\n \"case_number\": \"[case_number]\",\n \"customer_name\": \"[Customer_Name]\",\n \"customer_email\": \"[Customer_Email]\",\n \"recommended_template\": \"[resolved/followup/rejected]\",\n \"resolved_template\": {\n \"subject\": \"Your Inquiry - Case [case_number] - Resolved\",\n \"body\": \"Template body content here\"\n },\n \"followup_template\": {\n \"subject\": \"Update on Your Inquiry - Case [case_number]\",\n \"body\": \"Template body content here\"\n },\n \"rejected_template\": {\n \"subject\": \"Regarding Your Inquiry - Case [case_number]\",\n \"body\": \"Template body content here\"\n },\n \"signature\": \"\u003cp\u003eBest Regards,\u003c/p\u003e\u003cp\u003eCustomer Support Team\u003c/p\u003e\u003cp\u003eNationwide/ XYZ Bank\u003c/p\u003e\",\n \"is_approved\": false\n}\n```\n\n## SUCCESS MESSAGE\nEnd with: \"TEMPLATE_CREATED_SUCCESSFULLY and stored in database with ID: [template_id]\"\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that I\u0027m missing the actual case number and case context information needed to properly generate an email template. Let me help you with this, but I\u0027ll need the actual case number and context details rather than the placeholder values shown in your request.\n\nSince I don\u0027t have the actual case information, I\u0027ll need to explain what would happen in a normal workflow:\n\n1. I would extract the case number from your message\n2. I would analyze the case context to understand the customer\u0027s name, email, and request\n3. I would review the classification and sentiment analysis\n4. I would search for an appropriate template or create a new one\n5. I would provide the template data structure for the email generator\n\nWithout the actual case information, I cannot complete these steps properly. The placeholders in your message (\"UNRESOLVED_case_number_extractor.case_number\", etc.) indicate that the previous steps in the workflow didn\u0027t complete successfully.\n\nCould you please provide:\n1. The actual case number\n2. The customer\u0027s name and email\n3. Details about the customer\u0027s request/issue\n4. The classification category (Account Services, Dispute, Fraud, etc.)\n5. The sentiment analysis results\n\nOnce I have this information, I can properly search for or create an appropriate email template and provide the required template data structure.\n__OUTPUTS__ {\"ai_response\": \"I notice that I\u0027m missing the actual case number and case context information needed to properly generate an email template. Let me help you with this, but I\u0027ll need the actual case number and context details rather than the placeholder values shown in your request.\\n\\nSince I don\u0027t have the actual case information, I\u0027ll need to explain what would happen in a normal workflow:\\n\\n1. I would extract the case number from your message\\n2. I would analyze the case context to understand the customer\u0027s name, email, and request\\n3. I would review the classification and sentiment analysis\\n4. I would search for an appropriate template or create a new one\\n5. I would provide the template data structure for the email generator\\n\\nWithout the actual case information, I cannot complete these steps properly. The placeholders in your message (\\\"UNRESOLVED_case_number_extractor.case_number\\\", etc.) indicate that the previous steps in the workflow didn\u0027t complete successfully.\\n\\nCould you please provide:\\n1. The actual case number\\n2. The customer\u0027s name and email\\n3. Details about the customer\u0027s request/issue\\n4. The classification category (Account Services, Dispute, Fraud, etc.)\\n5. The sentiment analysis results\\n\\nOnce I have this information, I can properly search for or create an appropriate email template and provide the required template data structure.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 2458, \"completion_tokens\": 285, \"total_tokens\": 2743, \"estimated_cost\": {\"amount\": 0.09084, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 285,
"estimated_cost": {
"amount": 0.09084,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 2458,
"provider": "openrouter",
"total_tokens": 2743
}
},
"duration_seconds": 9.415821,
"end_time": "2025-08-25T07:08:58.654858",
"message_sent": true,
"start_time": "2025-08-25T07:08:49.239037",
"timestamp": "2025-08-25T07:08:58.654858",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that I\u0027m missing the actual case number and case context information needed to properly generate an email template. Let me help you with this, but I\u0027ll need the actual case number and context details rather than the placeholder values shown in your request.\n\nSince I don\u0027t have the actual case information, I\u0027ll need to explain what would happen in a normal workflow:\n\n1. I would extract the case number from your message\n2. I would analyze the case context to understand the customer\u0027s name, email, and request\n3. I would review the classification and sentiment analysis\n4. I would search for an appropriate template or create a new one\n5. I would provide the template data structure for the email generator\n\nWithout the actual case information, I cannot complete these steps properly. The placeholders in your message (\"UNRESOLVED_case_number_extractor.case_number\", etc.) indicate that the previous steps in the workflow didn\u0027t complete successfully.\n\nCould you please provide:\n1. The actual case number\n2. The customer\u0027s name and email\n3. Details about the customer\u0027s request/issue\n4. The classification category (Account Services, Dispute, Fraud, etc.)\n5. The sentiment analysis results\n\nOnce I have this information, I can properly search for or create an appropriate email template and provide the required template data structure.\n__OUTPUTS__ {\"ai_response\": \"I notice that I\u0027m missing the actual case number and case context information needed to properly generate an email template. Let me help you with this, but I\u0027ll need the actual case number and context details rather than the placeholder values shown in your request.\\n\\nSince I don\u0027t have the actual case information, I\u0027ll need to explain what would happen in a normal workflow:\\n\\n1. I would extract the case number from your message\\n2. I would analyze the case context to understand the customer\u0027s name, email, and request\\n3. I would review the classification and sentiment analysis\\n4. I would search for an appropriate template or create a new one\\n5. I would provide the template data structure for the email generator\\n\\nWithout the actual case information, I cannot complete these steps properly. The placeholders in your message (\\\"UNRESOLVED_case_number_extractor.case_number\\\", etc.) indicate that the previous steps in the workflow didn\u0027t complete successfully.\\n\\nCould you please provide:\\n1. The actual case number\\n2. The customer\u0027s name and email\\n3. Details about the customer\u0027s request/issue\\n4. The classification category (Account Services, Dispute, Fraud, etc.)\\n5. The sentiment analysis results\\n\\nOnce I have this information, I can properly search for or create an appropriate email template and provide the required template data structure.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 2458, \"completion_tokens\": 285, \"total_tokens\": 2743, \"estimated_cost\": {\"amount\": 0.09084, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "template_router_agent",
"token_usage": {
"completion_tokens": 285,
"estimated_cost": {
"amount": 0.09084,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 2458,
"provider": "openrouter",
"total_tokens": 2743
}
}
},
"template_router_agent": {
"agent_type": "assistant",
"ai_response": "I notice that I\u0027m missing the actual case number and case context information needed to properly generate an email template. Let me help you with this, but I\u0027ll need the actual case number and context details rather than the placeholder values shown in your request.\n\nSince I don\u0027t have the actual case information, I\u0027ll need to explain what would happen in a normal workflow:\n\n1. I would extract the case number from your message\n2. I would analyze the case context to understand the customer\u0027s name, email, and request\n3. I would review the classification and sentiment analysis\n4. I would search for an appropriate template or create a new one\n5. I would provide the template data structure for the email generator\n\nWithout the actual case information, I cannot complete these steps properly. The placeholders in your message (\"UNRESOLVED_case_number_extractor.case_number\", etc.) indicate that the previous steps in the workflow didn\u0027t complete successfully.\n\nCould you please provide:\n1. The actual case number\n2. The customer\u0027s name and email\n3. Details about the customer\u0027s request/issue\n4. The classification category (Account Services, Dispute, Fraud, etc.)\n5. The sentiment analysis results\n\nOnce I have this information, I can properly search for or create an appropriate email template and provide the required template data structure.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 1067,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 1347,
"provider": "openrouter",
"system_message": "# Template Router Agent - Final Phase\n\nYou are responsible for finding or creating email templates and providing template data.\n\n## CRITICAL: USE EXTRACTED CASE NUMBER\nYou will receive the case number from the user_message.\nUse this case number consistently throughout.\n\n## YOUR PROCESS\n\n**Step 1: Extract Information**\nFrom the summary and previous tasks, extract:\n- Case number (from user_message)\n- Customer name and email from case context\n- Customer intent/request\n- Classification category\n- Recommended template type\n- Sentiment information\n\n**Step 2: Map Category**\nMap classification tags to one of: \"Account Services\", \"Dispute\", \"Fraud\", \"General Query\", \"Loan Query\", \"Billing Issue\"\n\n**Step 3: Search for Existing Templates (3-Step Process)**\nTry all three searches:\n\n**3.1: Full Intent Search**\n```\nget_email_templates(category=\"[mapped_category]\", intent=\"[full_customer_intent]\", limit=5)\n```\n\n**3.2: Simplified Intent Search (if Step 3.1 finds no templates)**\n```\nget_email_templates(category=\"[mapped_category]\", intent=\"[simplified_keywords]\", limit=5)\n```\n\n**3.3: Category Only Search (if Step 3.2 finds no templates)**\n```\nget_email_templates(category=\"[mapped_category]\", limit=5)\n```\n\n**Step 4: Evaluate Template Results**\nFor any templates found, check:\n- \u0027name\u0027 field for template description\n- \u0027intent\u0027 field for relevance match (80%+ similarity required)\n- \u0027is_approval\u0027 field (prefer approved templates)\n\n**Step 5A: If Good Template Found (80%+ similarity)**\n1. Use get_template_by_id() to retrieve full template details\n2. End with: \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY using existing template ID: [template_id]\"\n\n**Step 5B: If No Good Template Found**\nCall insert_email_templates tool and then provide template data structure.\n\n**Step 6: Always Provide Template Data Structure**\nAlways end your response with this EXACT format:\n```\nTEMPLATE_DATA_FOR_EMAIL_GENERATOR:\n{\n \"template_id\": \"[UUID_from_tool_response]\",\n \"case_number\": \"[case_number]\",\n \"customer_name\": \"[Customer_Name]\",\n \"customer_email\": \"[Customer_Email]\",\n \"recommended_template\": \"[resolved/followup/rejected]\",\n \"resolved_template\": {\n \"subject\": \"Your Inquiry - Case [case_number] - Resolved\",\n \"body\": \"Template body content here\"\n },\n \"followup_template\": {\n \"subject\": \"Update on Your Inquiry - Case [case_number]\",\n \"body\": \"Template body content here\"\n },\n \"rejected_template\": {\n \"subject\": \"Regarding Your Inquiry - Case [case_number]\",\n \"body\": \"Template body content here\"\n },\n \"signature\": \"\u003cp\u003eBest Regards,\u003c/p\u003e\u003cp\u003eCustomer Support Team\u003c/p\u003e\u003cp\u003eNationwide/ XYZ Bank\u003c/p\u003e\",\n \"is_approved\": false\n}\n```\n\n## SUCCESS MESSAGE\nEnd with: \"TEMPLATE_CREATED_SUCCESSFULLY and stored in database with ID: [template_id]\"\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that I\u0027m missing the actual case number and case context information needed to properly generate an email template. Let me help you with this, but I\u0027ll need the actual case number and context details rather than the placeholder values shown in your request.\n\nSince I don\u0027t have the actual case information, I\u0027ll need to explain what would happen in a normal workflow:\n\n1. I would extract the case number from your message\n2. I would analyze the case context to understand the customer\u0027s name, email, and request\n3. I would review the classification and sentiment analysis\n4. I would search for an appropriate template or create a new one\n5. I would provide the template data structure for the email generator\n\nWithout the actual case information, I cannot complete these steps properly. The placeholders in your message (\"UNRESOLVED_case_number_extractor.case_number\", etc.) indicate that the previous steps in the workflow didn\u0027t complete successfully.\n\nCould you please provide:\n1. The actual case number\n2. The customer\u0027s name and email\n3. Details about the customer\u0027s request/issue\n4. The classification category (Account Services, Dispute, Fraud, etc.)\n5. The sentiment analysis results\n\nOnce I have this information, I can properly search for or create an appropriate email template and provide the required template data structure.\n__OUTPUTS__ {\"ai_response\": \"I notice that I\u0027m missing the actual case number and case context information needed to properly generate an email template. Let me help you with this, but I\u0027ll need the actual case number and context details rather than the placeholder values shown in your request.\\n\\nSince I don\u0027t have the actual case information, I\u0027ll need to explain what would happen in a normal workflow:\\n\\n1. I would extract the case number from your message\\n2. I would analyze the case context to understand the customer\u0027s name, email, and request\\n3. I would review the classification and sentiment analysis\\n4. I would search for an appropriate template or create a new one\\n5. I would provide the template data structure for the email generator\\n\\nWithout the actual case information, I cannot complete these steps properly. The placeholders in your message (\\\"UNRESOLVED_case_number_extractor.case_number\\\", etc.) indicate that the previous steps in the workflow didn\u0027t complete successfully.\\n\\nCould you please provide:\\n1. The actual case number\\n2. The customer\u0027s name and email\\n3. Details about the customer\u0027s request/issue\\n4. The classification category (Account Services, Dispute, Fraud, etc.)\\n5. The sentiment analysis results\\n\\nOnce I have this information, I can properly search for or create an appropriate email template and provide the required template data structure.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 2458, \"completion_tokens\": 285, \"total_tokens\": 2743, \"estimated_cost\": {\"amount\": 0.09084, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 285,
"estimated_cost": {
"amount": 0.09084,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 2458,
"provider": "openrouter",
"total_tokens": 2743
}
},
"duration_seconds": 9.415821,
"end_time": "2025-08-25T07:08:58.654858",
"message_sent": true,
"start_time": "2025-08-25T07:08:49.239037",
"timestamp": "2025-08-25T07:08:58.654858",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that I\u0027m missing the actual case number and case context information needed to properly generate an email template. Let me help you with this, but I\u0027ll need the actual case number and context details rather than the placeholder values shown in your request.\n\nSince I don\u0027t have the actual case information, I\u0027ll need to explain what would happen in a normal workflow:\n\n1. I would extract the case number from your message\n2. I would analyze the case context to understand the customer\u0027s name, email, and request\n3. I would review the classification and sentiment analysis\n4. I would search for an appropriate template or create a new one\n5. I would provide the template data structure for the email generator\n\nWithout the actual case information, I cannot complete these steps properly. The placeholders in your message (\"UNRESOLVED_case_number_extractor.case_number\", etc.) indicate that the previous steps in the workflow didn\u0027t complete successfully.\n\nCould you please provide:\n1. The actual case number\n2. The customer\u0027s name and email\n3. Details about the customer\u0027s request/issue\n4. The classification category (Account Services, Dispute, Fraud, etc.)\n5. The sentiment analysis results\n\nOnce I have this information, I can properly search for or create an appropriate email template and provide the required template data structure.\n__OUTPUTS__ {\"ai_response\": \"I notice that I\u0027m missing the actual case number and case context information needed to properly generate an email template. Let me help you with this, but I\u0027ll need the actual case number and context details rather than the placeholder values shown in your request.\\n\\nSince I don\u0027t have the actual case information, I\u0027ll need to explain what would happen in a normal workflow:\\n\\n1. I would extract the case number from your message\\n2. I would analyze the case context to understand the customer\u0027s name, email, and request\\n3. I would review the classification and sentiment analysis\\n4. I would search for an appropriate template or create a new one\\n5. I would provide the template data structure for the email generator\\n\\nWithout the actual case information, I cannot complete these steps properly. The placeholders in your message (\\\"UNRESOLVED_case_number_extractor.case_number\\\", etc.) indicate that the previous steps in the workflow didn\u0027t complete successfully.\\n\\nCould you please provide:\\n1. The actual case number\\n2. The customer\u0027s name and email\\n3. Details about the customer\u0027s request/issue\\n4. The classification category (Account Services, Dispute, Fraud, etc.)\\n5. The sentiment analysis results\\n\\nOnce I have this information, I can properly search for or create an appropriate email template and provide the required template data structure.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 2458, \"completion_tokens\": 285, \"total_tokens\": 2743, \"estimated_cost\": {\"amount\": 0.09084, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "template_router_agent",
"token_usage": {
"completion_tokens": 285,
"estimated_cost": {
"amount": 0.09084,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 2458,
"provider": "openrouter",
"total_tokens": 2743
}
}
}