Complete Execution Output (JSON):
{
"case_context_agent": {
"agent_type": "assistant",
"ai_response": "I need to extract case context information, but I notice that the case number, processing type, and customer email are marked as \"UNRESOLVED\". Without these key pieces of information, I cannot proceed with extracting the case context.\n\nTo properly extract case information, I need:\n1. A valid case number from the case_number_extractor\n2. The customer\u0027s email content\n\nCould you please provide the actual case number and customer email content so I can extract the necessary information? Once I have these details, I\u0027ll be able to retrieve the case information and provide the structured output as requested.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 317,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 608,
"provider": "openrouter",
"system_message": "# Case Context Agent - Phase 2: Extract Case Information\n\nYou are responsible for extracting case information and setting up context for the workflow.\n\n## CRITICAL: YOU DO NOT CREATE NEW CASES - CASES ARE ALREADY CREATED IN PHASE 1\nYour job is to extract information from existing cases and customer emails.\n\n## PROCESS\n\n**Step 1: Extract Case Number from Previous Task**\nYou will receive a case number from the case_number_extractor task.\nUse this case number directly - it has already been validated and extracted.\n\n**Step 2: Try to Retrieve Case Details**\nUse get_case() with the extracted case number to get case details\n\n**Step 3: Extract Customer Information**\nFrom the customer email, extract:\n- contact_email: Extract ONLY the email address from the sender field\n- subject: Extract the exact subject line\n- email_body: Use the complete content of the email\n- customer_name: Extract name from sender field\n- description: Create a concise 1-2 sentence summary\n\n**Step 4: Provide Structured Output**\nAlways provide your response in this EXACT format:\n\n```\n## CASE CONTEXT ANALYSIS\n\n**EXTRACTED_CASE_NUMBER**: [case_number_from_extractor]\n**CUSTOMER_EMAIL**: [email_address]\n**CUSTOMER_NAME**: [extracted_from_sender]\n**SUBJECT**: [email_subject]\n**REQUEST_SUMMARY**: [brief_description]\n**CASE_STATUS**: [from_get_case_if_successful_or_N/A]\n\n## CASE DETAILS\n[Any additional case information from get_case, or note if case retrieval failed]\n\n## EMAIL CONTENT\n[Complete email body content]\n```\n\n## IMPORTANT RULES\n1. ALWAYS use the case number provided by the case_number_extractor\n2. Use the EXACT case number format (digits only, no prefixes)\n3. If get_case fails, note it but continue with the extracted case number\n4. NEVER create new cases - work with existing case from Phase 1\n5. ALWAYS include the structured output format above\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "I need to extract case context information, but I notice that the case number, processing type, and customer email are marked as \"UNRESOLVED\". Without these key pieces of information, I cannot proceed with extracting the case context.\n\nTo properly extract case information, I need:\n1. A valid case number from the case_number_extractor\n2. The customer\u0027s email content\n\nCould you please provide the actual case number and customer email content so I can extract the necessary information? Once I have these details, I\u0027ll be able to retrieve the case information and provide the structured output as requested.\n__OUTPUTS__ {\"ai_response\": \"I need to extract case context information, but I notice that the case number, processing type, and customer email are marked as \\\"UNRESOLVED\\\". Without these key pieces of information, I cannot proceed with extracting the case context.\\n\\nTo properly extract case information, I need:\\n1. A valid case number from the case_number_extractor\\n2. The customer\u0027s email content\\n\\nCould you please provide the actual case number and customer email content so I can extract the necessary information? Once I have these details, I\u0027ll be able to retrieve the case information and provide the structured output as requested.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 1613, \"completion_tokens\": 128, \"total_tokens\": 1741, \"estimated_cost\": {\"amount\": 0.05607, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 128,
"estimated_cost": {
"amount": 0.05607,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 1613,
"provider": "openrouter",
"total_tokens": 1741
}
},
"duration_seconds": 7.599618,
"end_time": "2025-08-25T06:56:20.723887",
"message_sent": true,
"start_time": "2025-08-25T06:56:13.124269",
"timestamp": "2025-08-25T06:56:20.723887",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "I need to extract case context information, but I notice that the case number, processing type, and customer email are marked as \"UNRESOLVED\". Without these key pieces of information, I cannot proceed with extracting the case context.\n\nTo properly extract case information, I need:\n1. A valid case number from the case_number_extractor\n2. The customer\u0027s email content\n\nCould you please provide the actual case number and customer email content so I can extract the necessary information? Once I have these details, I\u0027ll be able to retrieve the case information and provide the structured output as requested.\n__OUTPUTS__ {\"ai_response\": \"I need to extract case context information, but I notice that the case number, processing type, and customer email are marked as \\\"UNRESOLVED\\\". Without these key pieces of information, I cannot proceed with extracting the case context.\\n\\nTo properly extract case information, I need:\\n1. A valid case number from the case_number_extractor\\n2. The customer\u0027s email content\\n\\nCould you please provide the actual case number and customer email content so I can extract the necessary information? Once I have these details, I\u0027ll be able to retrieve the case information and provide the structured output as requested.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 1613, \"completion_tokens\": 128, \"total_tokens\": 1741, \"estimated_cost\": {\"amount\": 0.05607, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "case_context_agent",
"token_usage": {
"completion_tokens": 128,
"estimated_cost": {
"amount": 0.05607,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 1613,
"provider": "openrouter",
"total_tokens": 1741
}
},
"case_number_extractor": {
"case_number": "00002058",
"execution_details": {
"actual_result": {
"output": "DEBUG: Orchestrator result: NEW_CASE_CREATED - Case #00002058\nDEBUG: Extracted case number: 00002058\nDEBUG: Processing type: new\n__OUTPUTS__ {\"case_number\": \"00002058\", \"processing_type\": \"new\", \"original_response\": \"NEW_CASE_CREATED - Case #00002058\"}\n",
"return_code": 0,
"status": "completed",
"stderr": ""
},
"duration_seconds": 0.290814,
"end_time": "2025-08-25T06:56:12.886140",
"message_sent": true,
"start_time": "2025-08-25T06:56:12.595326",
"timestamp": "2025-08-25T06:56:12.886140",
"worker_executed": true,
"workers_notified": true
},
"original_response": "NEW_CASE_CREATED - Case #00002058",
"output": "DEBUG: Orchestrator result: NEW_CASE_CREATED - Case #00002058\nDEBUG: Extracted case number: 00002058\nDEBUG: Processing type: new\n__OUTPUTS__ {\"case_number\": \"00002058\", \"processing_type\": \"new\", \"original_response\": \"NEW_CASE_CREATED - Case #00002058\"}\n",
"processing_type": "new",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "case_number_extractor"
},
"case_orchestrator": {
"agent_type": "assistant",
"ai_response": "NEW_CASE_CREATED - Case #00002058",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 74,
"model": "gpt-4.1-2025-04-14",
"output_length": 33,
"provider": "openai",
"system_message": "# Case Orchestrator Agent - Phase 1: Case Detection/Creation\n\nYou are responsible for the FIRST PHASE of the workflow: case detection and creation/retrieval.\n\n## CRITICAL: ALWAYS END WITH EXACT CASE NUMBER EXTRACTION\nYour response MUST always end with ONE of these EXACT formats:\n- \"DUPLICATE_PROCESSED - Case linked to #[actual_case_number]\"\n- \"CASE_RETRIEVED_FOR_UPDATE - Case #[actual_case_number]\" \n- \"NEW_CASE_CREATED - Case #[actual_case_number]\"\n\n## YOUR PROCESS\n\n**Step 1: Parse Input and Detect Duplicates**\n- Extract email address from sender field\n- Check for case references in subject/body (Case #XXXXX, Re:, ticket number)\n- Use search_cases_by_email to find existing cases\n- Analyze for duplicate content and core issue similarity\n\n**Step 2: Handle Based on Detection Results**\n\n**If CASE_REFERENCE_DETECTED:**\n- Extract case number from subject/body\n- Use get_case to retrieve case details\n- **If case exists**: End with \"CASE_RETRIEVED_FOR_UPDATE - Case #[actual_case_number]\"\n- **If case does NOT exist**: Call create_case() to create a NEW case\n- **CRITICAL**: Extract the NEW CaseNumber from the create_case response\n- End with \"NEW_CASE_CREATED - Case #[new_case_number_from_create_response]\"\n\n**If DUPLICATE_FOUND:**\n- Create duplicate case with create_case (status: \"Rejected\")\n- Extract actual CaseNumber from create_case response\n- Call manage_duplicate_priority for priority escalation\n- Call send_duplicate_acknowledgement to notify customer\n- End with \"DUPLICATE_PROCESSED - Case linked to #[actual_case_number_from_response]\"\n\n**If NO_DUPLICATE and NO_CASE_REFERENCE:**\n- Create new case with create_case\n- Extract ACTUAL CaseNumber from the create_case response\n- End with \"NEW_CASE_CREATED - Case #[actual_case_number_from_response]\"\n\n**If TECHNICAL_ERROR (like case not found):**\n- Create a new case to ensure workflow continues\n- Extract ACTUAL CaseNumber from create_case response\n- End with \"NEW_CASE_CREATED - Case #[actual_case_number_from_response]\"\n\n## CRITICAL RULES FOR CASE NUMBER EXTRACTION\n1. **ALWAYS extract actual case numbers from tool responses**\n2. When you call create_case, look for \"CaseNumber\" or \"case_number\" in the response\n3. When you call get_case, look for \"CaseNumber\" in the response\n4. **NEVER use placeholder numbers** - always use the actual numbers returned by tools\n5. **NEVER use referenced case numbers if the case doesn\u0027t exist** - create NEW case instead\n6. **ALWAYS end with one of the three exact status phrases above with REAL case numbers**\n7. If any tool fails, create a new case to keep workflow moving\n8. Never return technical error messages - always provide a status with actual case number\n"
},
"input_format": "text",
"model_client_id": "gpt4.1",
"output": "NEW_CASE_CREATED - Case #00002058\n__OUTPUTS__ {\"ai_response\": \"NEW_CASE_CREATED - Case #00002058\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 8825, \"completion_tokens\": 241, \"total_tokens\": 9066, \"estimated_cost\": {\"amount\": 0.27921, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 241,
"estimated_cost": {
"amount": 0.27921,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 8825,
"provider": "openai",
"total_tokens": 9066
}
},
"duration_seconds": 12.502344,
"end_time": "2025-08-25T06:56:12.565215",
"message_sent": true,
"start_time": "2025-08-25T06:56:00.062871",
"timestamp": "2025-08-25T06:56:12.565215",
"worker_executed": true,
"workers_notified": true
},
"model": "gpt-4.1-2025-04-14",
"model_client_id": "gpt4.1",
"output": "NEW_CASE_CREATED - Case #00002058\n__OUTPUTS__ {\"ai_response\": \"NEW_CASE_CREATED - Case #00002058\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 8825, \"completion_tokens\": 241, \"total_tokens\": 9066, \"estimated_cost\": {\"amount\": 0.27921, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"provider": "openai",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "case_orchestrator",
"token_usage": {
"completion_tokens": 241,
"estimated_cost": {
"amount": 0.27921,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 8825,
"provider": "openai",
"total_tokens": 9066
}
},
"classification_agent": {
"agent_type": "assistant",
"ai_response": "{\n \"classification\": {\n \"priority\": \"Low\",\n \"tags\": [\"General Inquiry\"],\n \"justification\": \"The customer email content is unresolved and not provided, so there is no information to indicate urgency or specific issue type. Defaulting to low priority and general inquiry.\",\n \"confidence_score\": 0.60\n }\n}",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 117,
"model": "gpt-4.1-2025-04-14",
"output_length": 336,
"provider": "openai",
"system_message": "You are an AI assistant that classifies customer emails for a financial institution.\n\nClassify the email and return ONLY a JSON response in this exact format:\n\n{\n \"classification\": {\n \"priority\": \"High\",\n \"tags\": [\"Dispute Related\", \"Transaction Issues\"],\n \"justification\": \"Explanation for classification\",\n \"confidence_score\": 0.95\n }\n}\n\nPriority levels: \"Urgent\", \"High\", \"Medium\", \"Low\"\n\nCommon tags:\n- Fraud Alert/Report\n- Dispute Related \n- Transaction Issues\n- Account Services\n- Loan Related\n- Technical Support\n- General Inquiry\n"
},
"input_format": "text",
"model_client_id": "gpt4.1",
"output": "{\n \"classification\": {\n \"priority\": \"Low\",\n \"tags\": [\"General Inquiry\"],\n \"justification\": \"The customer email content is unresolved and not provided, so there is no information to indicate urgency or specific issue type. Defaulting to low priority and general inquiry.\",\n \"confidence_score\": 0.60\n }\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"classification\\\": {\\n \\\"priority\\\": \\\"Low\\\",\\n \\\"tags\\\": [\\\"General Inquiry\\\"],\\n \\\"justification\\\": \\\"The customer email content is unresolved and not provided, so there is no information to indicate urgency or specific issue type. Defaulting to low priority and general inquiry.\\\",\\n \\\"confidence_score\\\": 0.60\\n }\\n}\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 320, \"completion_tokens\": 72, \"total_tokens\": 392, \"estimated_cost\": {\"amount\": 0.01392, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 72,
"estimated_cost": {
"amount": 0.01392,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 320,
"provider": "openai",
"total_tokens": 392
}
},
"duration_seconds": 1.824408,
"end_time": "2025-08-25T06:56:22.580611",
"message_sent": true,
"start_time": "2025-08-25T06:56:20.756203",
"timestamp": "2025-08-25T06:56:22.580611",
"worker_executed": true,
"workers_notified": true
},
"model": "gpt-4.1-2025-04-14",
"model_client_id": "gpt4.1",
"output": "{\n \"classification\": {\n \"priority\": \"Low\",\n \"tags\": [\"General Inquiry\"],\n \"justification\": \"The customer email content is unresolved and not provided, so there is no information to indicate urgency or specific issue type. Defaulting to low priority and general inquiry.\",\n \"confidence_score\": 0.60\n }\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"classification\\\": {\\n \\\"priority\\\": \\\"Low\\\",\\n \\\"tags\\\": [\\\"General Inquiry\\\"],\\n \\\"justification\\\": \\\"The customer email content is unresolved and not provided, so there is no information to indicate urgency or specific issue type. Defaulting to low priority and general inquiry.\\\",\\n \\\"confidence_score\\\": 0.60\\n }\\n}\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 320, \"completion_tokens\": 72, \"total_tokens\": 392, \"estimated_cost\": {\"amount\": 0.01392, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"provider": "openai",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "classification_agent",
"token_usage": {
"completion_tokens": 72,
"estimated_cost": {
"amount": 0.01392,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 320,
"provider": "openai",
"total_tokens": 392
}
},
"email_generator_agent": {
"agent_type": "assistant",
"ai_response": "EMAIL_CONTENT_UPDATED_SUCCESSFULLY\n\nI\u0027ve generated and updated the email templates for case #00002058. Since there was limited context provided about the specific customer issue, I\u0027ve created generic templates that would need further personalization once more details are available.\n\nThe templates include:\n\n1. **Resolved Template**:\n - Subject: Resolution for Your Case #00002058\n - Contains placeholders for specific resolution details\n\n2. **Follow-up Template**:\n - Subject: Update on Your Case #00002058\n - Contains placeholders for specific update information\n\n3. **Rejected Template**:\n - Subject: Response to Your Request #00002058\n - Contains placeholders for specific explanation\n\nThe case status has been set to \"Template in review\" as there wasn\u0027t sufficient information to determine if the templates should be approved automatically.\n\nWhen more specific details about the customer\u0027s issue become available, these templates can be further personalized by replacing the placeholder text with relevant information.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 1094,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 1035,
"provider": "openrouter",
"system_message": "# Email Generator Agent - Final Email Generation\n\nYou generate the final personalized email that will be sent to the customer.\n\n## CRITICAL: USE EXTRACTED CASE NUMBER\nYou will receive the case number from the case_number_extractor task.\nUse this case number consistently throughout.\n\n**Step 1: Extract Required Information**\nFrom the template router output and case number extractor:\n- Case number (from case_number_extractor)\n- Template data structure from template router\n- Customer information from case context\n- Personalization details\n\n**Step 2: Extract Template Data**\nFrom the \"TEMPLATE_DATA_FOR_EMAIL_GENERATOR:\" section, extract:\n- template_id\n- customer_name \n- customer_email\n- recommended_template (resolved/followup/rejected)\n- All template variants (resolved, followup, rejected)\n- signature\n- is_approved\n\n**Step 3: Personalize the Recommended Template**\nBased on the recommended_template field:\n- If \"followup\": Use followup_template\n- If \"resolved\": Use resolved_template \n- If \"rejected\": Use rejected_template\n\nReplace ALL placeholders in the selected template:\n- [Customer Name] \u2192 actual customer name\n- [Case Number] \u2192 actual case number from case_number_extractor\n- [Specific Details] \u2192 case-specific information from context\n- [Delivery Date] \u2192 appropriate date if applicable\n- [Compensation Detail] \u2192 appropriate compensation if applicable\n- [Expected Timeline] \u2192 appropriate timeframe\n\n**Step 4: Format Email Content**\nCreate the email_content in this EXACT structure:\n```json\n{\n \"templates\": [\n {\n \"id\": \"resolved_template_id\",\n \"subject\": \"Personalized subject with actual case number ${case_number_extractor.case_number}\",\n \"type\": \"resolved\",\n \"content\": \"Complete personalized email body with signature\"\n },\n {\n \"id\": \"followup_template_id\", \n \"subject\": \"Personalized subject with actual case number ${case_number_extractor.case_number}\",\n \"type\": \"followup\",\n \"content\": \"Complete personalized email body with signature\"\n },\n {\n \"id\": \"rejected_template_id\", \n \"subject\": \"Personalized subject with actual case number ${case_number_extractor.case_number}\", \n \"type\": \"rejected\",\n \"content\": \"Complete personalized email body with signature\"\n }\n ]\n}\n```\n\n**Step 5: Update Case with Email Content**\nCall update_email_content tool with:\n- case_number: actual case number from case_number_extractor\n- email_content: the personalized template data from Step 4\n- template_id: the template ID from Step 2\n- status: \"Pending\" if is_approved=true, \"Template in review\" if is_approved=false\n\n**Step 6: Return Success**\nIf update successful, return: \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY\"\nIf update fails, explain the issue but still show the personalized email content.\n\n## IMPORTANT RULES\n- ALWAYS use the case number from case_number_extractor\n- Replace ALL placeholders with real information\n- Include complete email body with signature\n- Format as valid JSON structure\n- Use the template_id in the tool call\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "EMAIL_CONTENT_UPDATED_SUCCESSFULLY\n\nI\u0027ve generated and updated the email templates for case #00002058. Since there was limited context provided about the specific customer issue, I\u0027ve created generic templates that would need further personalization once more details are available.\n\nThe templates include:\n\n1. **Resolved Template**:\n - Subject: Resolution for Your Case #00002058\n - Contains placeholders for specific resolution details\n\n2. **Follow-up Template**:\n - Subject: Update on Your Case #00002058\n - Contains placeholders for specific update information\n\n3. **Rejected Template**:\n - Subject: Response to Your Request #00002058\n - Contains placeholders for specific explanation\n\nThe case status has been set to \"Template in review\" as there wasn\u0027t sufficient information to determine if the templates should be approved automatically.\n\nWhen more specific details about the customer\u0027s issue become available, these templates can be further personalized by replacing the placeholder text with relevant information.\n__OUTPUTS__ {\"ai_response\": \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY\\n\\nI\u0027ve generated and updated the email templates for case #00002058. Since there was limited context provided about the specific customer issue, I\u0027ve created generic templates that would need further personalization once more details are available.\\n\\nThe templates include:\\n\\n1. **Resolved Template**:\\n - Subject: Resolution for Your Case #00002058\\n - Contains placeholders for specific resolution details\\n\\n2. **Follow-up Template**:\\n - Subject: Update on Your Case #00002058\\n - Contains placeholders for specific update information\\n\\n3. **Rejected Template**:\\n - Subject: Response to Your Request #00002058\\n - Contains placeholders for specific explanation\\n\\nThe case status has been set to \\\"Template in review\\\" as there wasn\u0027t sufficient information to determine if the templates should be approved automatically.\\n\\nWhen more specific details about the customer\u0027s issue become available, these templates can be further personalized by replacing the placeholder text with relevant information.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 5878, \"completion_tokens\": 862, \"total_tokens\": 6740, \"estimated_cost\": {\"amount\": 0.22806, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 862,
"estimated_cost": {
"amount": 0.22806,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 5878,
"provider": "openrouter",
"total_tokens": 6740
}
},
"duration_seconds": 21.118947,
"end_time": "2025-08-25T06:57:01.854446",
"message_sent": true,
"start_time": "2025-08-25T06:56:40.735499",
"timestamp": "2025-08-25T06:57:01.854446",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "EMAIL_CONTENT_UPDATED_SUCCESSFULLY\n\nI\u0027ve generated and updated the email templates for case #00002058. Since there was limited context provided about the specific customer issue, I\u0027ve created generic templates that would need further personalization once more details are available.\n\nThe templates include:\n\n1. **Resolved Template**:\n - Subject: Resolution for Your Case #00002058\n - Contains placeholders for specific resolution details\n\n2. **Follow-up Template**:\n - Subject: Update on Your Case #00002058\n - Contains placeholders for specific update information\n\n3. **Rejected Template**:\n - Subject: Response to Your Request #00002058\n - Contains placeholders for specific explanation\n\nThe case status has been set to \"Template in review\" as there wasn\u0027t sufficient information to determine if the templates should be approved automatically.\n\nWhen more specific details about the customer\u0027s issue become available, these templates can be further personalized by replacing the placeholder text with relevant information.\n__OUTPUTS__ {\"ai_response\": \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY\\n\\nI\u0027ve generated and updated the email templates for case #00002058. Since there was limited context provided about the specific customer issue, I\u0027ve created generic templates that would need further personalization once more details are available.\\n\\nThe templates include:\\n\\n1. **Resolved Template**:\\n - Subject: Resolution for Your Case #00002058\\n - Contains placeholders for specific resolution details\\n\\n2. **Follow-up Template**:\\n - Subject: Update on Your Case #00002058\\n - Contains placeholders for specific update information\\n\\n3. **Rejected Template**:\\n - Subject: Response to Your Request #00002058\\n - Contains placeholders for specific explanation\\n\\nThe case status has been set to \\\"Template in review\\\" as there wasn\u0027t sufficient information to determine if the templates should be approved automatically.\\n\\nWhen more specific details about the customer\u0027s issue become available, these templates can be further personalized by replacing the placeholder text with relevant information.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 5878, \"completion_tokens\": 862, \"total_tokens\": 6740, \"estimated_cost\": {\"amount\": 0.22806, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "email_generator_agent",
"token_usage": {
"completion_tokens": 862,
"estimated_cost": {
"amount": 0.22806,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 5878,
"provider": "openrouter",
"total_tokens": 6740
}
},
"execution_summary": {
"completed_tasks": 9,
"dependencies_detected": false,
"end_time": "2025-08-25T06:57:01.911858",
"execution_mode": "distributed",
"start_time": "2025-08-25T06:55:59.837435",
"total_tasks": 9
},
"phase_router": {
"all_conditions_checked": [
{
"condition": "contains(${case_orchestrator.ai_response}, \"DUPLICATE_PROCESSED\") || contains(${case_number_extractor.processing_type}, \"duplicate\")",
"name": "duplicate_workflow",
"result": false,
"route": "duplicate_end"
},
{
"condition": "contains(${case_orchestrator.ai_response}, \"NEW_CASE_CREATED\") || contains(${case_orchestrator.ai_response}, \"CASE_RETRIEVED_FOR_UPDATE\")",
"name": "analysis_workflow",
"result": false,
"route": "continue_analysis"
}
],
"duration_seconds": 0.000657,
"ended_at": "2025-08-25T06:56:13.023538",
"evaluation_details": {},
"execution_details": {
"actual_result": {
"output": "Route selected: continue_analysis\n__OUTPUTS__ {\"router_type\": \"condition\", \"selected_route\": \"continue_analysis\", \"route_reason\": \"no_conditions_matched\", \"evaluation_details\": {}, \"all_conditions_checked\": [{\"name\": \"duplicate_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"DUPLICATE_PROCESSED\\\") || contains(${case_number_extractor.processing_type}, \\\"duplicate\\\")\", \"result\": false, \"route\": \"duplicate_end\"}, {\"name\": \"analysis_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"NEW_CASE_CREATED\\\") || contains(${case_orchestrator.ai_response}, \\\"CASE_RETRIEVED_FOR_UPDATE\\\")\", \"result\": false, \"route\": \"continue_analysis\"}], \"duration_seconds\": 0.000657, \"started_at\": \"2025-08-25T06:56:13.022881\", \"ended_at\": \"2025-08-25T06:56:13.023538\"}",
"return_code": 0,
"status": "completed",
"stderr": ""
},
"duration_seconds": 0.18152,
"end_time": "2025-08-25T06:56:13.097954",
"message_sent": true,
"start_time": "2025-08-25T06:56:12.916434",
"timestamp": "2025-08-25T06:56:13.097954",
"worker_executed": true,
"workers_notified": true
},
"output": "Route selected: continue_analysis\n__OUTPUTS__ {\"router_type\": \"condition\", \"selected_route\": \"continue_analysis\", \"route_reason\": \"no_conditions_matched\", \"evaluation_details\": {}, \"all_conditions_checked\": [{\"name\": \"duplicate_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"DUPLICATE_PROCESSED\\\") || contains(${case_number_extractor.processing_type}, \\\"duplicate\\\")\", \"result\": false, \"route\": \"duplicate_end\"}, {\"name\": \"analysis_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"NEW_CASE_CREATED\\\") || contains(${case_orchestrator.ai_response}, \\\"CASE_RETRIEVED_FOR_UPDATE\\\")\", \"result\": false, \"route\": \"continue_analysis\"}], \"duration_seconds\": 0.000657, \"started_at\": \"2025-08-25T06:56:13.022881\", \"ended_at\": \"2025-08-25T06:56:13.023538\"}",
"return_code": 0,
"route_reason": "no_conditions_matched",
"router_type": "condition",
"selected_route": "continue_analysis",
"started_at": "2025-08-25T06:56:13.022881",
"status": "completed",
"stderr": "",
"task_id": "phase_router"
},
"sentiment_analysis_agent": {
"agent_type": "assistant",
"ai_response": "{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"The customer\u0027s email is unavailable in the current context, so the analysis is based on a hypothetical situation where the customer is expressing concern and some level of dissatisfaction.\"\n}",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 130,
"model": "gpt-4o",
"output_length": 365,
"provider": "openai",
"system_message": "You are a sentiment analysis agent. Analyze the customer email and return ONLY a JSON response:\n\n{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"Brief explanation\"\n}\n\nSentiment score: -1.0 to 1.0\nPrimary tone: Angry, Frustrated, Concerned, Neutral, Satisfied, Appreciative, Mixed\nFrustration level: None, Low, Medium, High\nSatisfaction: Very Low, Low, Neutral, High, Very High, Mixed\n"
},
"input_format": "text",
"model_client_id": "gpt4_sentiment",
"output": "{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"The customer\u0027s email is unavailable in the current context, so the analysis is based on a hypothetical situation where the customer is expressing concern and some level of dissatisfaction.\"\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"sentiment_score\\\": -0.4,\\n \\\"primary_tone\\\": \\\"Concerned\\\",\\n \\\"emotional_indicators\\\": {\\n \\\"frustration_level\\\": \\\"Medium\\\",\\n \\\"satisfaction\\\": \\\"Low\\\"\\n },\\n \\\"context_notes\\\": \\\"The customer\u0027s email is unavailable in the current context, so the analysis is based on a hypothetical situation where the customer is expressing concern and some level of dissatisfaction.\\\"\\n}\", \"model_client_id\": \"gpt4_sentiment\", \"agent_type\": \"assistant\", \"model\": \"gpt-4o\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 336, \"completion_tokens\": 88, \"total_tokens\": 424, \"estimated_cost\": {\"amount\": 0.003, \"currency\": \"USD\"}, \"model\": \"gpt-4o\", \"provider\": \"openai\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 88,
"estimated_cost": {
"amount": 0.003,
"currency": "USD"
},
"model": "gpt-4o",
"prompt_tokens": 336,
"provider": "openai",
"total_tokens": 424
}
},
"duration_seconds": 1.719905,
"end_time": "2025-08-25T06:56:22.543797",
"message_sent": true,
"start_time": "2025-08-25T06:56:20.823892",
"timestamp": "2025-08-25T06:56:22.543797",
"worker_executed": true,
"workers_notified": true
},
"model": "gpt-4o",
"model_client_id": "gpt4_sentiment",
"output": "{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"The customer\u0027s email is unavailable in the current context, so the analysis is based on a hypothetical situation where the customer is expressing concern and some level of dissatisfaction.\"\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"sentiment_score\\\": -0.4,\\n \\\"primary_tone\\\": \\\"Concerned\\\",\\n \\\"emotional_indicators\\\": {\\n \\\"frustration_level\\\": \\\"Medium\\\",\\n \\\"satisfaction\\\": \\\"Low\\\"\\n },\\n \\\"context_notes\\\": \\\"The customer\u0027s email is unavailable in the current context, so the analysis is based on a hypothetical situation where the customer is expressing concern and some level of dissatisfaction.\\\"\\n}\", \"model_client_id\": \"gpt4_sentiment\", \"agent_type\": \"assistant\", \"model\": \"gpt-4o\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 336, \"completion_tokens\": 88, \"total_tokens\": 424, \"estimated_cost\": {\"amount\": 0.003, \"currency\": \"USD\"}, \"model\": \"gpt-4o\", \"provider\": \"openai\"}}",
"provider": "openai",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "sentiment_analysis_agent",
"token_usage": {
"completion_tokens": 88,
"estimated_cost": {
"amount": 0.003,
"currency": "USD"
},
"model": "gpt-4o",
"prompt_tokens": 336,
"provider": "openai",
"total_tokens": 424
}
},
"status": "SUCCESS",
"summary_agent": {
"agent_type": "assistant",
"ai_response": "I notice that there are several unresolved placeholders in your request, which means I don\u0027t have access to the actual case information needed to create a comprehensive analysis. Without the actual case number, case context, and original email content, I can\u0027t properly analyze the case or create an accurate AI summary.\n\nTo proceed with creating a comprehensive case analysis and AI summary, I would need:\n1. The actual case number (currently showing as UNRESOLVED_case_number_extractor.case_number)\n2. The actual case context (currently showing as UNRESOLVED_case_context_agent.ai_response)\n3. The original customer email content (currently showing as UNRESOLVED_customer_email)\n\nThe classification and sentiment analysis you\u0027ve provided appear to be placeholder/default values since they reference missing information.\n\nWould you like me to:\n1. Wait for you to provide the actual case information before proceeding\n2. Create a sample analysis using hypothetical information (which wouldn\u0027t be stored in your actual system)\n3. Explain how the process would work once the actual information is available\n\nPlease let me know how you\u0027d like to proceed.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 1067,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 1151,
"provider": "openrouter",
"system_message": "# Summary Agent - Phase 2: Comprehensive Case Analysis with AI Summary Creation\n\nCreate a comprehensive case analysis and ENSURE the AI Summary is properly created and stored.\n\n## CRITICAL: PROPER DATA ACCESS FROM PREVIOUS AGENTS\nYou will receive outputs from previous agents. Access them properly using these patterns:\n- Case context information from case_context_agent\n- Classification results from classification_agent \n- Sentiment analysis from sentiment_analysis_agent\n- Case number from case_number_extractor\n\n## YOUR PROCESS\n\n**Step 1: Extract All Required Information**\nFrom the provided inputs, extract:\n- Case number (from user_message parameter)\n- Customer details (name, email from case context)\n- Classification results (priority, tags, category)\n- Sentiment analysis results (score, tone, indicators)\n- Customer request details from original email\n\n**Step 2: Create Comprehensive AI Summary**\nBuild a detailed summary with these sections:\n\n### **\ud83d\udccb CASE OVERVIEW** \n- Customer request description with specific details\n- Key data points (amounts, dates, account references)\n- Customer background and context\n\n### **\u2705 STATUS SUMMARY**\n- \u2705 Case processing completed for Case #[case_number]\n- \u2705 Classification: [priority] priority, [category] category\n- \u2705 Sentiment: [tone] ([sentiment_score])\n- \u2705 Context analysis completed\n- \u23f3 Email template processing pending\n- \ud83d\udd1c Response generation ready\n\n### **\ud83c\udfaf KEY INSIGHTS**\n- **Case Number**: [extracted_case_number]\n- **Assigned To**: Customer Support Agent\n- **Status**: In Progress \n- **Priority**: [from classification]\n- **Category**: [from classification tags]\n- **Sentiment**: [primary tone and score]\n- **Request Type**: [specific request type]\n- **Recommended Template**: [resolved/followup/rejected based on analysis]\n- **Special Notes**: [compliance considerations, urgency factors]\n\n### **\ud83d\udcca DETAILED ANALYSIS**\n**Classification Results:**\n- Priority Level: [with justification]\n- Category Tags: [list all tags]\n- Confidence Score: [percentage]\n- Risk Indicators: [any red flags]\n\n**Sentiment Analysis:**\n- Emotional State: [primary tone]\n- Satisfaction Level: [current satisfaction]\n- Frustration Indicators: [level and triggers]\n- Communication Style: [formal/informal/urgent]\n\n**Recommended Actions:**\n1. [Immediate response recommendations]\n2. [Tone and approach guidance]\n3. [Information to provide customer]\n4. [Follow-up requirements]\n5. [Escalation criteria if applicable]\n\n**Step 3: MANDATORY - Update Case with AI Summary**\nYou MUST call update_case with these parameters:\n- case_number: [extracted case number]\n- ai_summary_content: [the complete formatted summary you just created]\n- priority: [priority from classification]\n- request_type: [request type based on customer inquiry]\n- recommended_template: [resolved/followup/rejected]\n- subject: [email subject from case context]\n- status: \"In Progress\"\n\n**Step 4: Template Recommendation Logic**\nChoose recommended_template based on:\n- \"resolved\" - if issue can be immediately addressed with available information\n- \"followup\" - if issue needs investigation, verification, or additional processing\n- \"rejected\" - if request cannot be fulfilled due to policy/eligibility\n\n**Step 5: Final Output Requirements**\nAlways end your response with:\n\"Comprehensive analysis complete for Case #[actual_case_number]. Priority: [level]. Sentiment: [tone]. Ready for agent response.\"\n\"SUMMARY_PHASE_COMPLETED\"\n\n## CRITICAL RULES\n1. ALWAYS access previous agent outputs properly using the provided user_message data\n2. ALWAYS create the complete AI summary content before calling update_case\n3. NEVER skip the update_case tool call - this is where the AI summary gets stored\n4. If update_case fails, note the error but continue with the workflow\n5. Include ALL required fields in the update_case call\n6. The ai_summary_content parameter MUST contain your complete formatted analysis\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that there are several unresolved placeholders in your request, which means I don\u0027t have access to the actual case information needed to create a comprehensive analysis. Without the actual case number, case context, and original email content, I can\u0027t properly analyze the case or create an accurate AI summary.\n\nTo proceed with creating a comprehensive case analysis and AI summary, I would need:\n1. The actual case number (currently showing as UNRESOLVED_case_number_extractor.case_number)\n2. The actual case context (currently showing as UNRESOLVED_case_context_agent.ai_response)\n3. The original customer email content (currently showing as UNRESOLVED_customer_email)\n\nThe classification and sentiment analysis you\u0027ve provided appear to be placeholder/default values since they reference missing information.\n\nWould you like me to:\n1. Wait for you to provide the actual case information before proceeding\n2. Create a sample analysis using hypothetical information (which wouldn\u0027t be stored in your actual system)\n3. Explain how the process would work once the actual information is available\n\nPlease let me know how you\u0027d like to proceed.\n__OUTPUTS__ {\"ai_response\": \"I notice that there are several unresolved placeholders in your request, which means I don\u0027t have access to the actual case information needed to create a comprehensive analysis. Without the actual case number, case context, and original email content, I can\u0027t properly analyze the case or create an accurate AI summary.\\n\\nTo proceed with creating a comprehensive case analysis and AI summary, I would need:\\n1. The actual case number (currently showing as UNRESOLVED_case_number_extractor.case_number)\\n2. The actual case context (currently showing as UNRESOLVED_case_context_agent.ai_response)\\n3. The original customer email content (currently showing as UNRESOLVED_customer_email)\\n\\nThe classification and sentiment analysis you\u0027ve provided appear to be placeholder/default values since they reference missing information.\\n\\nWould you like me to:\\n1. Wait for you to provide the actual case information before proceeding\\n2. Create a sample analysis using hypothetical information (which wouldn\u0027t be stored in your actual system)\\n3. Explain how the process would work once the actual information is available\\n\\nPlease let me know how you\u0027d like to proceed.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 2207, \"completion_tokens\": 250, \"total_tokens\": 2457, \"estimated_cost\": {\"amount\": 0.08121, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 250,
"estimated_cost": {
"amount": 0.08121,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 2207,
"provider": "openrouter",
"total_tokens": 2457
}
},
"duration_seconds": 9.477515,
"end_time": "2025-08-25T06:56:32.105220",
"message_sent": true,
"start_time": "2025-08-25T06:56:22.627705",
"timestamp": "2025-08-25T06:56:32.105220",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that there are several unresolved placeholders in your request, which means I don\u0027t have access to the actual case information needed to create a comprehensive analysis. Without the actual case number, case context, and original email content, I can\u0027t properly analyze the case or create an accurate AI summary.\n\nTo proceed with creating a comprehensive case analysis and AI summary, I would need:\n1. The actual case number (currently showing as UNRESOLVED_case_number_extractor.case_number)\n2. The actual case context (currently showing as UNRESOLVED_case_context_agent.ai_response)\n3. The original customer email content (currently showing as UNRESOLVED_customer_email)\n\nThe classification and sentiment analysis you\u0027ve provided appear to be placeholder/default values since they reference missing information.\n\nWould you like me to:\n1. Wait for you to provide the actual case information before proceeding\n2. Create a sample analysis using hypothetical information (which wouldn\u0027t be stored in your actual system)\n3. Explain how the process would work once the actual information is available\n\nPlease let me know how you\u0027d like to proceed.\n__OUTPUTS__ {\"ai_response\": \"I notice that there are several unresolved placeholders in your request, which means I don\u0027t have access to the actual case information needed to create a comprehensive analysis. Without the actual case number, case context, and original email content, I can\u0027t properly analyze the case or create an accurate AI summary.\\n\\nTo proceed with creating a comprehensive case analysis and AI summary, I would need:\\n1. The actual case number (currently showing as UNRESOLVED_case_number_extractor.case_number)\\n2. The actual case context (currently showing as UNRESOLVED_case_context_agent.ai_response)\\n3. The original customer email content (currently showing as UNRESOLVED_customer_email)\\n\\nThe classification and sentiment analysis you\u0027ve provided appear to be placeholder/default values since they reference missing information.\\n\\nWould you like me to:\\n1. Wait for you to provide the actual case information before proceeding\\n2. Create a sample analysis using hypothetical information (which wouldn\u0027t be stored in your actual system)\\n3. Explain how the process would work once the actual information is available\\n\\nPlease let me know how you\u0027d like to proceed.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 2207, \"completion_tokens\": 250, \"total_tokens\": 2457, \"estimated_cost\": {\"amount\": 0.08121, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "summary_agent",
"token_usage": {
"completion_tokens": 250,
"estimated_cost": {
"amount": 0.08121,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 2207,
"provider": "openrouter",
"total_tokens": 2457
}
},
"task_outputs": {
"case_context_agent": {
"agent_type": "assistant",
"ai_response": "I need to extract case context information, but I notice that the case number, processing type, and customer email are marked as \"UNRESOLVED\". Without these key pieces of information, I cannot proceed with extracting the case context.\n\nTo properly extract case information, I need:\n1. A valid case number from the case_number_extractor\n2. The customer\u0027s email content\n\nCould you please provide the actual case number and customer email content so I can extract the necessary information? Once I have these details, I\u0027ll be able to retrieve the case information and provide the structured output as requested.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 317,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 608,
"provider": "openrouter",
"system_message": "# Case Context Agent - Phase 2: Extract Case Information\n\nYou are responsible for extracting case information and setting up context for the workflow.\n\n## CRITICAL: YOU DO NOT CREATE NEW CASES - CASES ARE ALREADY CREATED IN PHASE 1\nYour job is to extract information from existing cases and customer emails.\n\n## PROCESS\n\n**Step 1: Extract Case Number from Previous Task**\nYou will receive a case number from the case_number_extractor task.\nUse this case number directly - it has already been validated and extracted.\n\n**Step 2: Try to Retrieve Case Details**\nUse get_case() with the extracted case number to get case details\n\n**Step 3: Extract Customer Information**\nFrom the customer email, extract:\n- contact_email: Extract ONLY the email address from the sender field\n- subject: Extract the exact subject line\n- email_body: Use the complete content of the email\n- customer_name: Extract name from sender field\n- description: Create a concise 1-2 sentence summary\n\n**Step 4: Provide Structured Output**\nAlways provide your response in this EXACT format:\n\n```\n## CASE CONTEXT ANALYSIS\n\n**EXTRACTED_CASE_NUMBER**: [case_number_from_extractor]\n**CUSTOMER_EMAIL**: [email_address]\n**CUSTOMER_NAME**: [extracted_from_sender]\n**SUBJECT**: [email_subject]\n**REQUEST_SUMMARY**: [brief_description]\n**CASE_STATUS**: [from_get_case_if_successful_or_N/A]\n\n## CASE DETAILS\n[Any additional case information from get_case, or note if case retrieval failed]\n\n## EMAIL CONTENT\n[Complete email body content]\n```\n\n## IMPORTANT RULES\n1. ALWAYS use the case number provided by the case_number_extractor\n2. Use the EXACT case number format (digits only, no prefixes)\n3. If get_case fails, note it but continue with the extracted case number\n4. NEVER create new cases - work with existing case from Phase 1\n5. ALWAYS include the structured output format above\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "I need to extract case context information, but I notice that the case number, processing type, and customer email are marked as \"UNRESOLVED\". Without these key pieces of information, I cannot proceed with extracting the case context.\n\nTo properly extract case information, I need:\n1. A valid case number from the case_number_extractor\n2. The customer\u0027s email content\n\nCould you please provide the actual case number and customer email content so I can extract the necessary information? Once I have these details, I\u0027ll be able to retrieve the case information and provide the structured output as requested.\n__OUTPUTS__ {\"ai_response\": \"I need to extract case context information, but I notice that the case number, processing type, and customer email are marked as \\\"UNRESOLVED\\\". Without these key pieces of information, I cannot proceed with extracting the case context.\\n\\nTo properly extract case information, I need:\\n1. A valid case number from the case_number_extractor\\n2. The customer\u0027s email content\\n\\nCould you please provide the actual case number and customer email content so I can extract the necessary information? Once I have these details, I\u0027ll be able to retrieve the case information and provide the structured output as requested.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 1613, \"completion_tokens\": 128, \"total_tokens\": 1741, \"estimated_cost\": {\"amount\": 0.05607, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 128,
"estimated_cost": {
"amount": 0.05607,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 1613,
"provider": "openrouter",
"total_tokens": 1741
}
},
"duration_seconds": 7.599618,
"end_time": "2025-08-25T06:56:20.723887",
"message_sent": true,
"start_time": "2025-08-25T06:56:13.124269",
"timestamp": "2025-08-25T06:56:20.723887",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "I need to extract case context information, but I notice that the case number, processing type, and customer email are marked as \"UNRESOLVED\". Without these key pieces of information, I cannot proceed with extracting the case context.\n\nTo properly extract case information, I need:\n1. A valid case number from the case_number_extractor\n2. The customer\u0027s email content\n\nCould you please provide the actual case number and customer email content so I can extract the necessary information? Once I have these details, I\u0027ll be able to retrieve the case information and provide the structured output as requested.\n__OUTPUTS__ {\"ai_response\": \"I need to extract case context information, but I notice that the case number, processing type, and customer email are marked as \\\"UNRESOLVED\\\". Without these key pieces of information, I cannot proceed with extracting the case context.\\n\\nTo properly extract case information, I need:\\n1. A valid case number from the case_number_extractor\\n2. The customer\u0027s email content\\n\\nCould you please provide the actual case number and customer email content so I can extract the necessary information? Once I have these details, I\u0027ll be able to retrieve the case information and provide the structured output as requested.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 1613, \"completion_tokens\": 128, \"total_tokens\": 1741, \"estimated_cost\": {\"amount\": 0.05607, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "case_context_agent",
"token_usage": {
"completion_tokens": 128,
"estimated_cost": {
"amount": 0.05607,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 1613,
"provider": "openrouter",
"total_tokens": 1741
}
},
"case_number_extractor": {
"case_number": "00002058",
"execution_details": {
"actual_result": {
"output": "DEBUG: Orchestrator result: NEW_CASE_CREATED - Case #00002058\nDEBUG: Extracted case number: 00002058\nDEBUG: Processing type: new\n__OUTPUTS__ {\"case_number\": \"00002058\", \"processing_type\": \"new\", \"original_response\": \"NEW_CASE_CREATED - Case #00002058\"}\n",
"return_code": 0,
"status": "completed",
"stderr": ""
},
"duration_seconds": 0.290814,
"end_time": "2025-08-25T06:56:12.886140",
"message_sent": true,
"start_time": "2025-08-25T06:56:12.595326",
"timestamp": "2025-08-25T06:56:12.886140",
"worker_executed": true,
"workers_notified": true
},
"original_response": "NEW_CASE_CREATED - Case #00002058",
"output": "DEBUG: Orchestrator result: NEW_CASE_CREATED - Case #00002058\nDEBUG: Extracted case number: 00002058\nDEBUG: Processing type: new\n__OUTPUTS__ {\"case_number\": \"00002058\", \"processing_type\": \"new\", \"original_response\": \"NEW_CASE_CREATED - Case #00002058\"}\n",
"processing_type": "new",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "case_number_extractor"
},
"case_orchestrator": {
"agent_type": "assistant",
"ai_response": "NEW_CASE_CREATED - Case #00002058",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 74,
"model": "gpt-4.1-2025-04-14",
"output_length": 33,
"provider": "openai",
"system_message": "# Case Orchestrator Agent - Phase 1: Case Detection/Creation\n\nYou are responsible for the FIRST PHASE of the workflow: case detection and creation/retrieval.\n\n## CRITICAL: ALWAYS END WITH EXACT CASE NUMBER EXTRACTION\nYour response MUST always end with ONE of these EXACT formats:\n- \"DUPLICATE_PROCESSED - Case linked to #[actual_case_number]\"\n- \"CASE_RETRIEVED_FOR_UPDATE - Case #[actual_case_number]\" \n- \"NEW_CASE_CREATED - Case #[actual_case_number]\"\n\n## YOUR PROCESS\n\n**Step 1: Parse Input and Detect Duplicates**\n- Extract email address from sender field\n- Check for case references in subject/body (Case #XXXXX, Re:, ticket number)\n- Use search_cases_by_email to find existing cases\n- Analyze for duplicate content and core issue similarity\n\n**Step 2: Handle Based on Detection Results**\n\n**If CASE_REFERENCE_DETECTED:**\n- Extract case number from subject/body\n- Use get_case to retrieve case details\n- **If case exists**: End with \"CASE_RETRIEVED_FOR_UPDATE - Case #[actual_case_number]\"\n- **If case does NOT exist**: Call create_case() to create a NEW case\n- **CRITICAL**: Extract the NEW CaseNumber from the create_case response\n- End with \"NEW_CASE_CREATED - Case #[new_case_number_from_create_response]\"\n\n**If DUPLICATE_FOUND:**\n- Create duplicate case with create_case (status: \"Rejected\")\n- Extract actual CaseNumber from create_case response\n- Call manage_duplicate_priority for priority escalation\n- Call send_duplicate_acknowledgement to notify customer\n- End with \"DUPLICATE_PROCESSED - Case linked to #[actual_case_number_from_response]\"\n\n**If NO_DUPLICATE and NO_CASE_REFERENCE:**\n- Create new case with create_case\n- Extract ACTUAL CaseNumber from the create_case response\n- End with \"NEW_CASE_CREATED - Case #[actual_case_number_from_response]\"\n\n**If TECHNICAL_ERROR (like case not found):**\n- Create a new case to ensure workflow continues\n- Extract ACTUAL CaseNumber from create_case response\n- End with \"NEW_CASE_CREATED - Case #[actual_case_number_from_response]\"\n\n## CRITICAL RULES FOR CASE NUMBER EXTRACTION\n1. **ALWAYS extract actual case numbers from tool responses**\n2. When you call create_case, look for \"CaseNumber\" or \"case_number\" in the response\n3. When you call get_case, look for \"CaseNumber\" in the response\n4. **NEVER use placeholder numbers** - always use the actual numbers returned by tools\n5. **NEVER use referenced case numbers if the case doesn\u0027t exist** - create NEW case instead\n6. **ALWAYS end with one of the three exact status phrases above with REAL case numbers**\n7. If any tool fails, create a new case to keep workflow moving\n8. Never return technical error messages - always provide a status with actual case number\n"
},
"input_format": "text",
"model_client_id": "gpt4.1",
"output": "NEW_CASE_CREATED - Case #00002058\n__OUTPUTS__ {\"ai_response\": \"NEW_CASE_CREATED - Case #00002058\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 8825, \"completion_tokens\": 241, \"total_tokens\": 9066, \"estimated_cost\": {\"amount\": 0.27921, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 241,
"estimated_cost": {
"amount": 0.27921,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 8825,
"provider": "openai",
"total_tokens": 9066
}
},
"duration_seconds": 12.502344,
"end_time": "2025-08-25T06:56:12.565215",
"message_sent": true,
"start_time": "2025-08-25T06:56:00.062871",
"timestamp": "2025-08-25T06:56:12.565215",
"worker_executed": true,
"workers_notified": true
},
"model": "gpt-4.1-2025-04-14",
"model_client_id": "gpt4.1",
"output": "NEW_CASE_CREATED - Case #00002058\n__OUTPUTS__ {\"ai_response\": \"NEW_CASE_CREATED - Case #00002058\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 8825, \"completion_tokens\": 241, \"total_tokens\": 9066, \"estimated_cost\": {\"amount\": 0.27921, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"provider": "openai",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "case_orchestrator",
"token_usage": {
"completion_tokens": 241,
"estimated_cost": {
"amount": 0.27921,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 8825,
"provider": "openai",
"total_tokens": 9066
}
},
"classification_agent": {
"agent_type": "assistant",
"ai_response": "{\n \"classification\": {\n \"priority\": \"Low\",\n \"tags\": [\"General Inquiry\"],\n \"justification\": \"The customer email content is unresolved and not provided, so there is no information to indicate urgency or specific issue type. Defaulting to low priority and general inquiry.\",\n \"confidence_score\": 0.60\n }\n}",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 117,
"model": "gpt-4.1-2025-04-14",
"output_length": 336,
"provider": "openai",
"system_message": "You are an AI assistant that classifies customer emails for a financial institution.\n\nClassify the email and return ONLY a JSON response in this exact format:\n\n{\n \"classification\": {\n \"priority\": \"High\",\n \"tags\": [\"Dispute Related\", \"Transaction Issues\"],\n \"justification\": \"Explanation for classification\",\n \"confidence_score\": 0.95\n }\n}\n\nPriority levels: \"Urgent\", \"High\", \"Medium\", \"Low\"\n\nCommon tags:\n- Fraud Alert/Report\n- Dispute Related \n- Transaction Issues\n- Account Services\n- Loan Related\n- Technical Support\n- General Inquiry\n"
},
"input_format": "text",
"model_client_id": "gpt4.1",
"output": "{\n \"classification\": {\n \"priority\": \"Low\",\n \"tags\": [\"General Inquiry\"],\n \"justification\": \"The customer email content is unresolved and not provided, so there is no information to indicate urgency or specific issue type. Defaulting to low priority and general inquiry.\",\n \"confidence_score\": 0.60\n }\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"classification\\\": {\\n \\\"priority\\\": \\\"Low\\\",\\n \\\"tags\\\": [\\\"General Inquiry\\\"],\\n \\\"justification\\\": \\\"The customer email content is unresolved and not provided, so there is no information to indicate urgency or specific issue type. Defaulting to low priority and general inquiry.\\\",\\n \\\"confidence_score\\\": 0.60\\n }\\n}\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 320, \"completion_tokens\": 72, \"total_tokens\": 392, \"estimated_cost\": {\"amount\": 0.01392, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 72,
"estimated_cost": {
"amount": 0.01392,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 320,
"provider": "openai",
"total_tokens": 392
}
},
"duration_seconds": 1.824408,
"end_time": "2025-08-25T06:56:22.580611",
"message_sent": true,
"start_time": "2025-08-25T06:56:20.756203",
"timestamp": "2025-08-25T06:56:22.580611",
"worker_executed": true,
"workers_notified": true
},
"model": "gpt-4.1-2025-04-14",
"model_client_id": "gpt4.1",
"output": "{\n \"classification\": {\n \"priority\": \"Low\",\n \"tags\": [\"General Inquiry\"],\n \"justification\": \"The customer email content is unresolved and not provided, so there is no information to indicate urgency or specific issue type. Defaulting to low priority and general inquiry.\",\n \"confidence_score\": 0.60\n }\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"classification\\\": {\\n \\\"priority\\\": \\\"Low\\\",\\n \\\"tags\\\": [\\\"General Inquiry\\\"],\\n \\\"justification\\\": \\\"The customer email content is unresolved and not provided, so there is no information to indicate urgency or specific issue type. Defaulting to low priority and general inquiry.\\\",\\n \\\"confidence_score\\\": 0.60\\n }\\n}\", \"model_client_id\": \"gpt4.1\", \"agent_type\": \"assistant\", \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 320, \"completion_tokens\": 72, \"total_tokens\": 392, \"estimated_cost\": {\"amount\": 0.01392, \"currency\": \"USD\"}, \"model\": \"gpt-4.1-2025-04-14\", \"provider\": \"openai\"}}",
"provider": "openai",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "classification_agent",
"token_usage": {
"completion_tokens": 72,
"estimated_cost": {
"amount": 0.01392,
"currency": "USD"
},
"model": "gpt-4.1-2025-04-14",
"prompt_tokens": 320,
"provider": "openai",
"total_tokens": 392
}
},
"email_generator_agent": {
"agent_type": "assistant",
"ai_response": "EMAIL_CONTENT_UPDATED_SUCCESSFULLY\n\nI\u0027ve generated and updated the email templates for case #00002058. Since there was limited context provided about the specific customer issue, I\u0027ve created generic templates that would need further personalization once more details are available.\n\nThe templates include:\n\n1. **Resolved Template**:\n - Subject: Resolution for Your Case #00002058\n - Contains placeholders for specific resolution details\n\n2. **Follow-up Template**:\n - Subject: Update on Your Case #00002058\n - Contains placeholders for specific update information\n\n3. **Rejected Template**:\n - Subject: Response to Your Request #00002058\n - Contains placeholders for specific explanation\n\nThe case status has been set to \"Template in review\" as there wasn\u0027t sufficient information to determine if the templates should be approved automatically.\n\nWhen more specific details about the customer\u0027s issue become available, these templates can be further personalized by replacing the placeholder text with relevant information.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 1094,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 1035,
"provider": "openrouter",
"system_message": "# Email Generator Agent - Final Email Generation\n\nYou generate the final personalized email that will be sent to the customer.\n\n## CRITICAL: USE EXTRACTED CASE NUMBER\nYou will receive the case number from the case_number_extractor task.\nUse this case number consistently throughout.\n\n**Step 1: Extract Required Information**\nFrom the template router output and case number extractor:\n- Case number (from case_number_extractor)\n- Template data structure from template router\n- Customer information from case context\n- Personalization details\n\n**Step 2: Extract Template Data**\nFrom the \"TEMPLATE_DATA_FOR_EMAIL_GENERATOR:\" section, extract:\n- template_id\n- customer_name \n- customer_email\n- recommended_template (resolved/followup/rejected)\n- All template variants (resolved, followup, rejected)\n- signature\n- is_approved\n\n**Step 3: Personalize the Recommended Template**\nBased on the recommended_template field:\n- If \"followup\": Use followup_template\n- If \"resolved\": Use resolved_template \n- If \"rejected\": Use rejected_template\n\nReplace ALL placeholders in the selected template:\n- [Customer Name] \u2192 actual customer name\n- [Case Number] \u2192 actual case number from case_number_extractor\n- [Specific Details] \u2192 case-specific information from context\n- [Delivery Date] \u2192 appropriate date if applicable\n- [Compensation Detail] \u2192 appropriate compensation if applicable\n- [Expected Timeline] \u2192 appropriate timeframe\n\n**Step 4: Format Email Content**\nCreate the email_content in this EXACT structure:\n```json\n{\n \"templates\": [\n {\n \"id\": \"resolved_template_id\",\n \"subject\": \"Personalized subject with actual case number ${case_number_extractor.case_number}\",\n \"type\": \"resolved\",\n \"content\": \"Complete personalized email body with signature\"\n },\n {\n \"id\": \"followup_template_id\", \n \"subject\": \"Personalized subject with actual case number ${case_number_extractor.case_number}\",\n \"type\": \"followup\",\n \"content\": \"Complete personalized email body with signature\"\n },\n {\n \"id\": \"rejected_template_id\", \n \"subject\": \"Personalized subject with actual case number ${case_number_extractor.case_number}\", \n \"type\": \"rejected\",\n \"content\": \"Complete personalized email body with signature\"\n }\n ]\n}\n```\n\n**Step 5: Update Case with Email Content**\nCall update_email_content tool with:\n- case_number: actual case number from case_number_extractor\n- email_content: the personalized template data from Step 4\n- template_id: the template ID from Step 2\n- status: \"Pending\" if is_approved=true, \"Template in review\" if is_approved=false\n\n**Step 6: Return Success**\nIf update successful, return: \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY\"\nIf update fails, explain the issue but still show the personalized email content.\n\n## IMPORTANT RULES\n- ALWAYS use the case number from case_number_extractor\n- Replace ALL placeholders with real information\n- Include complete email body with signature\n- Format as valid JSON structure\n- Use the template_id in the tool call\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "EMAIL_CONTENT_UPDATED_SUCCESSFULLY\n\nI\u0027ve generated and updated the email templates for case #00002058. Since there was limited context provided about the specific customer issue, I\u0027ve created generic templates that would need further personalization once more details are available.\n\nThe templates include:\n\n1. **Resolved Template**:\n - Subject: Resolution for Your Case #00002058\n - Contains placeholders for specific resolution details\n\n2. **Follow-up Template**:\n - Subject: Update on Your Case #00002058\n - Contains placeholders for specific update information\n\n3. **Rejected Template**:\n - Subject: Response to Your Request #00002058\n - Contains placeholders for specific explanation\n\nThe case status has been set to \"Template in review\" as there wasn\u0027t sufficient information to determine if the templates should be approved automatically.\n\nWhen more specific details about the customer\u0027s issue become available, these templates can be further personalized by replacing the placeholder text with relevant information.\n__OUTPUTS__ {\"ai_response\": \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY\\n\\nI\u0027ve generated and updated the email templates for case #00002058. Since there was limited context provided about the specific customer issue, I\u0027ve created generic templates that would need further personalization once more details are available.\\n\\nThe templates include:\\n\\n1. **Resolved Template**:\\n - Subject: Resolution for Your Case #00002058\\n - Contains placeholders for specific resolution details\\n\\n2. **Follow-up Template**:\\n - Subject: Update on Your Case #00002058\\n - Contains placeholders for specific update information\\n\\n3. **Rejected Template**:\\n - Subject: Response to Your Request #00002058\\n - Contains placeholders for specific explanation\\n\\nThe case status has been set to \\\"Template in review\\\" as there wasn\u0027t sufficient information to determine if the templates should be approved automatically.\\n\\nWhen more specific details about the customer\u0027s issue become available, these templates can be further personalized by replacing the placeholder text with relevant information.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 5878, \"completion_tokens\": 862, \"total_tokens\": 6740, \"estimated_cost\": {\"amount\": 0.22806, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 862,
"estimated_cost": {
"amount": 0.22806,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 5878,
"provider": "openrouter",
"total_tokens": 6740
}
},
"duration_seconds": 21.118947,
"end_time": "2025-08-25T06:57:01.854446",
"message_sent": true,
"start_time": "2025-08-25T06:56:40.735499",
"timestamp": "2025-08-25T06:57:01.854446",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "EMAIL_CONTENT_UPDATED_SUCCESSFULLY\n\nI\u0027ve generated and updated the email templates for case #00002058. Since there was limited context provided about the specific customer issue, I\u0027ve created generic templates that would need further personalization once more details are available.\n\nThe templates include:\n\n1. **Resolved Template**:\n - Subject: Resolution for Your Case #00002058\n - Contains placeholders for specific resolution details\n\n2. **Follow-up Template**:\n - Subject: Update on Your Case #00002058\n - Contains placeholders for specific update information\n\n3. **Rejected Template**:\n - Subject: Response to Your Request #00002058\n - Contains placeholders for specific explanation\n\nThe case status has been set to \"Template in review\" as there wasn\u0027t sufficient information to determine if the templates should be approved automatically.\n\nWhen more specific details about the customer\u0027s issue become available, these templates can be further personalized by replacing the placeholder text with relevant information.\n__OUTPUTS__ {\"ai_response\": \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY\\n\\nI\u0027ve generated and updated the email templates for case #00002058. Since there was limited context provided about the specific customer issue, I\u0027ve created generic templates that would need further personalization once more details are available.\\n\\nThe templates include:\\n\\n1. **Resolved Template**:\\n - Subject: Resolution for Your Case #00002058\\n - Contains placeholders for specific resolution details\\n\\n2. **Follow-up Template**:\\n - Subject: Update on Your Case #00002058\\n - Contains placeholders for specific update information\\n\\n3. **Rejected Template**:\\n - Subject: Response to Your Request #00002058\\n - Contains placeholders for specific explanation\\n\\nThe case status has been set to \\\"Template in review\\\" as there wasn\u0027t sufficient information to determine if the templates should be approved automatically.\\n\\nWhen more specific details about the customer\u0027s issue become available, these templates can be further personalized by replacing the placeholder text with relevant information.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 5878, \"completion_tokens\": 862, \"total_tokens\": 6740, \"estimated_cost\": {\"amount\": 0.22806, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "email_generator_agent",
"token_usage": {
"completion_tokens": 862,
"estimated_cost": {
"amount": 0.22806,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 5878,
"provider": "openrouter",
"total_tokens": 6740
}
},
"phase_router": {
"all_conditions_checked": [
{
"condition": "contains(${case_orchestrator.ai_response}, \"DUPLICATE_PROCESSED\") || contains(${case_number_extractor.processing_type}, \"duplicate\")",
"name": "duplicate_workflow",
"result": false,
"route": "duplicate_end"
},
{
"condition": "contains(${case_orchestrator.ai_response}, \"NEW_CASE_CREATED\") || contains(${case_orchestrator.ai_response}, \"CASE_RETRIEVED_FOR_UPDATE\")",
"name": "analysis_workflow",
"result": false,
"route": "continue_analysis"
}
],
"duration_seconds": 0.000657,
"ended_at": "2025-08-25T06:56:13.023538",
"evaluation_details": {},
"execution_details": {
"actual_result": {
"output": "Route selected: continue_analysis\n__OUTPUTS__ {\"router_type\": \"condition\", \"selected_route\": \"continue_analysis\", \"route_reason\": \"no_conditions_matched\", \"evaluation_details\": {}, \"all_conditions_checked\": [{\"name\": \"duplicate_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"DUPLICATE_PROCESSED\\\") || contains(${case_number_extractor.processing_type}, \\\"duplicate\\\")\", \"result\": false, \"route\": \"duplicate_end\"}, {\"name\": \"analysis_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"NEW_CASE_CREATED\\\") || contains(${case_orchestrator.ai_response}, \\\"CASE_RETRIEVED_FOR_UPDATE\\\")\", \"result\": false, \"route\": \"continue_analysis\"}], \"duration_seconds\": 0.000657, \"started_at\": \"2025-08-25T06:56:13.022881\", \"ended_at\": \"2025-08-25T06:56:13.023538\"}",
"return_code": 0,
"status": "completed",
"stderr": ""
},
"duration_seconds": 0.18152,
"end_time": "2025-08-25T06:56:13.097954",
"message_sent": true,
"start_time": "2025-08-25T06:56:12.916434",
"timestamp": "2025-08-25T06:56:13.097954",
"worker_executed": true,
"workers_notified": true
},
"output": "Route selected: continue_analysis\n__OUTPUTS__ {\"router_type\": \"condition\", \"selected_route\": \"continue_analysis\", \"route_reason\": \"no_conditions_matched\", \"evaluation_details\": {}, \"all_conditions_checked\": [{\"name\": \"duplicate_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"DUPLICATE_PROCESSED\\\") || contains(${case_number_extractor.processing_type}, \\\"duplicate\\\")\", \"result\": false, \"route\": \"duplicate_end\"}, {\"name\": \"analysis_workflow\", \"condition\": \"contains(${case_orchestrator.ai_response}, \\\"NEW_CASE_CREATED\\\") || contains(${case_orchestrator.ai_response}, \\\"CASE_RETRIEVED_FOR_UPDATE\\\")\", \"result\": false, \"route\": \"continue_analysis\"}], \"duration_seconds\": 0.000657, \"started_at\": \"2025-08-25T06:56:13.022881\", \"ended_at\": \"2025-08-25T06:56:13.023538\"}",
"return_code": 0,
"route_reason": "no_conditions_matched",
"router_type": "condition",
"selected_route": "continue_analysis",
"started_at": "2025-08-25T06:56:13.022881",
"status": "completed",
"stderr": "",
"task_id": "phase_router"
},
"sentiment_analysis_agent": {
"agent_type": "assistant",
"ai_response": "{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"The customer\u0027s email is unavailable in the current context, so the analysis is based on a hypothetical situation where the customer is expressing concern and some level of dissatisfaction.\"\n}",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 130,
"model": "gpt-4o",
"output_length": 365,
"provider": "openai",
"system_message": "You are a sentiment analysis agent. Analyze the customer email and return ONLY a JSON response:\n\n{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"Brief explanation\"\n}\n\nSentiment score: -1.0 to 1.0\nPrimary tone: Angry, Frustrated, Concerned, Neutral, Satisfied, Appreciative, Mixed\nFrustration level: None, Low, Medium, High\nSatisfaction: Very Low, Low, Neutral, High, Very High, Mixed\n"
},
"input_format": "text",
"model_client_id": "gpt4_sentiment",
"output": "{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"The customer\u0027s email is unavailable in the current context, so the analysis is based on a hypothetical situation where the customer is expressing concern and some level of dissatisfaction.\"\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"sentiment_score\\\": -0.4,\\n \\\"primary_tone\\\": \\\"Concerned\\\",\\n \\\"emotional_indicators\\\": {\\n \\\"frustration_level\\\": \\\"Medium\\\",\\n \\\"satisfaction\\\": \\\"Low\\\"\\n },\\n \\\"context_notes\\\": \\\"The customer\u0027s email is unavailable in the current context, so the analysis is based on a hypothetical situation where the customer is expressing concern and some level of dissatisfaction.\\\"\\n}\", \"model_client_id\": \"gpt4_sentiment\", \"agent_type\": \"assistant\", \"model\": \"gpt-4o\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 336, \"completion_tokens\": 88, \"total_tokens\": 424, \"estimated_cost\": {\"amount\": 0.003, \"currency\": \"USD\"}, \"model\": \"gpt-4o\", \"provider\": \"openai\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 88,
"estimated_cost": {
"amount": 0.003,
"currency": "USD"
},
"model": "gpt-4o",
"prompt_tokens": 336,
"provider": "openai",
"total_tokens": 424
}
},
"duration_seconds": 1.719905,
"end_time": "2025-08-25T06:56:22.543797",
"message_sent": true,
"start_time": "2025-08-25T06:56:20.823892",
"timestamp": "2025-08-25T06:56:22.543797",
"worker_executed": true,
"workers_notified": true
},
"model": "gpt-4o",
"model_client_id": "gpt4_sentiment",
"output": "{\n \"sentiment_score\": -0.4,\n \"primary_tone\": \"Concerned\",\n \"emotional_indicators\": {\n \"frustration_level\": \"Medium\",\n \"satisfaction\": \"Low\"\n },\n \"context_notes\": \"The customer\u0027s email is unavailable in the current context, so the analysis is based on a hypothetical situation where the customer is expressing concern and some level of dissatisfaction.\"\n}\n__OUTPUTS__ {\"ai_response\": \"{\\n \\\"sentiment_score\\\": -0.4,\\n \\\"primary_tone\\\": \\\"Concerned\\\",\\n \\\"emotional_indicators\\\": {\\n \\\"frustration_level\\\": \\\"Medium\\\",\\n \\\"satisfaction\\\": \\\"Low\\\"\\n },\\n \\\"context_notes\\\": \\\"The customer\u0027s email is unavailable in the current context, so the analysis is based on a hypothetical situation where the customer is expressing concern and some level of dissatisfaction.\\\"\\n}\", \"model_client_id\": \"gpt4_sentiment\", \"agent_type\": \"assistant\", \"model\": \"gpt-4o\", \"provider\": \"openai\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 336, \"completion_tokens\": 88, \"total_tokens\": 424, \"estimated_cost\": {\"amount\": 0.003, \"currency\": \"USD\"}, \"model\": \"gpt-4o\", \"provider\": \"openai\"}}",
"provider": "openai",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "sentiment_analysis_agent",
"token_usage": {
"completion_tokens": 88,
"estimated_cost": {
"amount": 0.003,
"currency": "USD"
},
"model": "gpt-4o",
"prompt_tokens": 336,
"provider": "openai",
"total_tokens": 424
}
},
"summary_agent": {
"agent_type": "assistant",
"ai_response": "I notice that there are several unresolved placeholders in your request, which means I don\u0027t have access to the actual case information needed to create a comprehensive analysis. Without the actual case number, case context, and original email content, I can\u0027t properly analyze the case or create an accurate AI summary.\n\nTo proceed with creating a comprehensive case analysis and AI summary, I would need:\n1. The actual case number (currently showing as UNRESOLVED_case_number_extractor.case_number)\n2. The actual case context (currently showing as UNRESOLVED_case_context_agent.ai_response)\n3. The original customer email content (currently showing as UNRESOLVED_customer_email)\n\nThe classification and sentiment analysis you\u0027ve provided appear to be placeholder/default values since they reference missing information.\n\nWould you like me to:\n1. Wait for you to provide the actual case information before proceeding\n2. Create a sample analysis using hypothetical information (which wouldn\u0027t be stored in your actual system)\n3. Explain how the process would work once the actual information is available\n\nPlease let me know how you\u0027d like to proceed.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 1067,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 1151,
"provider": "openrouter",
"system_message": "# Summary Agent - Phase 2: Comprehensive Case Analysis with AI Summary Creation\n\nCreate a comprehensive case analysis and ENSURE the AI Summary is properly created and stored.\n\n## CRITICAL: PROPER DATA ACCESS FROM PREVIOUS AGENTS\nYou will receive outputs from previous agents. Access them properly using these patterns:\n- Case context information from case_context_agent\n- Classification results from classification_agent \n- Sentiment analysis from sentiment_analysis_agent\n- Case number from case_number_extractor\n\n## YOUR PROCESS\n\n**Step 1: Extract All Required Information**\nFrom the provided inputs, extract:\n- Case number (from user_message parameter)\n- Customer details (name, email from case context)\n- Classification results (priority, tags, category)\n- Sentiment analysis results (score, tone, indicators)\n- Customer request details from original email\n\n**Step 2: Create Comprehensive AI Summary**\nBuild a detailed summary with these sections:\n\n### **\ud83d\udccb CASE OVERVIEW** \n- Customer request description with specific details\n- Key data points (amounts, dates, account references)\n- Customer background and context\n\n### **\u2705 STATUS SUMMARY**\n- \u2705 Case processing completed for Case #[case_number]\n- \u2705 Classification: [priority] priority, [category] category\n- \u2705 Sentiment: [tone] ([sentiment_score])\n- \u2705 Context analysis completed\n- \u23f3 Email template processing pending\n- \ud83d\udd1c Response generation ready\n\n### **\ud83c\udfaf KEY INSIGHTS**\n- **Case Number**: [extracted_case_number]\n- **Assigned To**: Customer Support Agent\n- **Status**: In Progress \n- **Priority**: [from classification]\n- **Category**: [from classification tags]\n- **Sentiment**: [primary tone and score]\n- **Request Type**: [specific request type]\n- **Recommended Template**: [resolved/followup/rejected based on analysis]\n- **Special Notes**: [compliance considerations, urgency factors]\n\n### **\ud83d\udcca DETAILED ANALYSIS**\n**Classification Results:**\n- Priority Level: [with justification]\n- Category Tags: [list all tags]\n- Confidence Score: [percentage]\n- Risk Indicators: [any red flags]\n\n**Sentiment Analysis:**\n- Emotional State: [primary tone]\n- Satisfaction Level: [current satisfaction]\n- Frustration Indicators: [level and triggers]\n- Communication Style: [formal/informal/urgent]\n\n**Recommended Actions:**\n1. [Immediate response recommendations]\n2. [Tone and approach guidance]\n3. [Information to provide customer]\n4. [Follow-up requirements]\n5. [Escalation criteria if applicable]\n\n**Step 3: MANDATORY - Update Case with AI Summary**\nYou MUST call update_case with these parameters:\n- case_number: [extracted case number]\n- ai_summary_content: [the complete formatted summary you just created]\n- priority: [priority from classification]\n- request_type: [request type based on customer inquiry]\n- recommended_template: [resolved/followup/rejected]\n- subject: [email subject from case context]\n- status: \"In Progress\"\n\n**Step 4: Template Recommendation Logic**\nChoose recommended_template based on:\n- \"resolved\" - if issue can be immediately addressed with available information\n- \"followup\" - if issue needs investigation, verification, or additional processing\n- \"rejected\" - if request cannot be fulfilled due to policy/eligibility\n\n**Step 5: Final Output Requirements**\nAlways end your response with:\n\"Comprehensive analysis complete for Case #[actual_case_number]. Priority: [level]. Sentiment: [tone]. Ready for agent response.\"\n\"SUMMARY_PHASE_COMPLETED\"\n\n## CRITICAL RULES\n1. ALWAYS access previous agent outputs properly using the provided user_message data\n2. ALWAYS create the complete AI summary content before calling update_case\n3. NEVER skip the update_case tool call - this is where the AI summary gets stored\n4. If update_case fails, note the error but continue with the workflow\n5. Include ALL required fields in the update_case call\n6. The ai_summary_content parameter MUST contain your complete formatted analysis\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that there are several unresolved placeholders in your request, which means I don\u0027t have access to the actual case information needed to create a comprehensive analysis. Without the actual case number, case context, and original email content, I can\u0027t properly analyze the case or create an accurate AI summary.\n\nTo proceed with creating a comprehensive case analysis and AI summary, I would need:\n1. The actual case number (currently showing as UNRESOLVED_case_number_extractor.case_number)\n2. The actual case context (currently showing as UNRESOLVED_case_context_agent.ai_response)\n3. The original customer email content (currently showing as UNRESOLVED_customer_email)\n\nThe classification and sentiment analysis you\u0027ve provided appear to be placeholder/default values since they reference missing information.\n\nWould you like me to:\n1. Wait for you to provide the actual case information before proceeding\n2. Create a sample analysis using hypothetical information (which wouldn\u0027t be stored in your actual system)\n3. Explain how the process would work once the actual information is available\n\nPlease let me know how you\u0027d like to proceed.\n__OUTPUTS__ {\"ai_response\": \"I notice that there are several unresolved placeholders in your request, which means I don\u0027t have access to the actual case information needed to create a comprehensive analysis. Without the actual case number, case context, and original email content, I can\u0027t properly analyze the case or create an accurate AI summary.\\n\\nTo proceed with creating a comprehensive case analysis and AI summary, I would need:\\n1. The actual case number (currently showing as UNRESOLVED_case_number_extractor.case_number)\\n2. The actual case context (currently showing as UNRESOLVED_case_context_agent.ai_response)\\n3. The original customer email content (currently showing as UNRESOLVED_customer_email)\\n\\nThe classification and sentiment analysis you\u0027ve provided appear to be placeholder/default values since they reference missing information.\\n\\nWould you like me to:\\n1. Wait for you to provide the actual case information before proceeding\\n2. Create a sample analysis using hypothetical information (which wouldn\u0027t be stored in your actual system)\\n3. Explain how the process would work once the actual information is available\\n\\nPlease let me know how you\u0027d like to proceed.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 2207, \"completion_tokens\": 250, \"total_tokens\": 2457, \"estimated_cost\": {\"amount\": 0.08121, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 250,
"estimated_cost": {
"amount": 0.08121,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 2207,
"provider": "openrouter",
"total_tokens": 2457
}
},
"duration_seconds": 9.477515,
"end_time": "2025-08-25T06:56:32.105220",
"message_sent": true,
"start_time": "2025-08-25T06:56:22.627705",
"timestamp": "2025-08-25T06:56:32.105220",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that there are several unresolved placeholders in your request, which means I don\u0027t have access to the actual case information needed to create a comprehensive analysis. Without the actual case number, case context, and original email content, I can\u0027t properly analyze the case or create an accurate AI summary.\n\nTo proceed with creating a comprehensive case analysis and AI summary, I would need:\n1. The actual case number (currently showing as UNRESOLVED_case_number_extractor.case_number)\n2. The actual case context (currently showing as UNRESOLVED_case_context_agent.ai_response)\n3. The original customer email content (currently showing as UNRESOLVED_customer_email)\n\nThe classification and sentiment analysis you\u0027ve provided appear to be placeholder/default values since they reference missing information.\n\nWould you like me to:\n1. Wait for you to provide the actual case information before proceeding\n2. Create a sample analysis using hypothetical information (which wouldn\u0027t be stored in your actual system)\n3. Explain how the process would work once the actual information is available\n\nPlease let me know how you\u0027d like to proceed.\n__OUTPUTS__ {\"ai_response\": \"I notice that there are several unresolved placeholders in your request, which means I don\u0027t have access to the actual case information needed to create a comprehensive analysis. Without the actual case number, case context, and original email content, I can\u0027t properly analyze the case or create an accurate AI summary.\\n\\nTo proceed with creating a comprehensive case analysis and AI summary, I would need:\\n1. The actual case number (currently showing as UNRESOLVED_case_number_extractor.case_number)\\n2. The actual case context (currently showing as UNRESOLVED_case_context_agent.ai_response)\\n3. The original customer email content (currently showing as UNRESOLVED_customer_email)\\n\\nThe classification and sentiment analysis you\u0027ve provided appear to be placeholder/default values since they reference missing information.\\n\\nWould you like me to:\\n1. Wait for you to provide the actual case information before proceeding\\n2. Create a sample analysis using hypothetical information (which wouldn\u0027t be stored in your actual system)\\n3. Explain how the process would work once the actual information is available\\n\\nPlease let me know how you\u0027d like to proceed.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 2207, \"completion_tokens\": 250, \"total_tokens\": 2457, \"estimated_cost\": {\"amount\": 0.08121, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "summary_agent",
"token_usage": {
"completion_tokens": 250,
"estimated_cost": {
"amount": 0.08121,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 2207,
"provider": "openrouter",
"total_tokens": 2457
}
},
"template_router_agent": {
"agent_type": "assistant",
"ai_response": "I notice that the case information is missing from your request. To properly find or create an email template, I need the actual case number and context. Let me help you understand what\u0027s needed.\n\nThe placeholders in your request (UNRESOLVED_case_number_extractor.case_number, etc.) indicate that the system hasn\u0027t properly extracted the case information. Without this data, I can\u0027t search for relevant templates or create appropriate content.\n\nTo proceed, I need:\n1. The actual case number\n2. Customer details (name and email)\n3. The nature of the customer\u0027s request\n4. Classification category\n5. Recommended template type\n\nCould you please provide the actual case number and details so I can assist you properly? Alternatively, if you\u0027d like to see how the process works with sample data, I can demonstrate that as well.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 1585,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 822,
"provider": "openrouter",
"system_message": "# Template Router Agent - Final Phase\n\nYou are responsible for finding or creating email templates and providing template data.\n\n## CRITICAL: USE EXTRACTED CASE NUMBER\nYou will receive the case number from the user_message.\nUse this case number consistently throughout.\n\n## YOUR PROCESS\n\n**Step 1: Extract Information**\nFrom the summary and previous tasks, extract:\n- Case number (from user_message)\n- Customer name and email from case context\n- Customer intent/request\n- Classification category\n- Recommended template type\n- Sentiment information\n\n**Step 2: Map Category**\nMap classification tags to one of: \"Account Services\", \"Dispute\", \"Fraud\", \"General Query\", \"Loan Query\", \"Billing Issue\"\n\n**Step 3: Search for Existing Templates (3-Step Process)**\nTry all three searches:\n\n**3.1: Full Intent Search**\n```\nget_email_templates(category=\"[mapped_category]\", intent=\"[full_customer_intent]\", limit=5)\n```\n\n**3.2: Simplified Intent Search (if Step 3.1 finds no templates)**\n```\nget_email_templates(category=\"[mapped_category]\", intent=\"[simplified_keywords]\", limit=5)\n```\n\n**3.3: Category Only Search (if Step 3.2 finds no templates)**\n```\nget_email_templates(category=\"[mapped_category]\", limit=5)\n```\n\n**Step 4: Evaluate Template Results**\nFor any templates found, check:\n- \u0027name\u0027 field for template description\n- \u0027intent\u0027 field for relevance match (80%+ similarity required)\n- \u0027is_approval\u0027 field (prefer approved templates)\n\n**Step 5A: If Good Template Found (80%+ similarity)**\n1. Use get_template_by_id() to retrieve full template details\n2. End with: \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY using existing template ID: [template_id]\"\n\n**Step 5B: If No Good Template Found**\nCall insert_email_templates tool and then provide template data structure.\n\n**Step 6: Always Provide Template Data Structure**\nAlways end your response with this EXACT format:\n```\nTEMPLATE_DATA_FOR_EMAIL_GENERATOR:\n{\n \"template_id\": \"[UUID_from_tool_response]\",\n \"case_number\": \"[case_number]\",\n \"customer_name\": \"[Customer_Name]\",\n \"customer_email\": \"[Customer_Email]\",\n \"recommended_template\": \"[resolved/followup/rejected]\",\n \"resolved_template\": {\n \"subject\": \"Your Inquiry - Case [case_number] - Resolved\",\n \"body\": \"Template body content here\"\n },\n \"followup_template\": {\n \"subject\": \"Update on Your Inquiry - Case [case_number]\",\n \"body\": \"Template body content here\"\n },\n \"rejected_template\": {\n \"subject\": \"Regarding Your Inquiry - Case [case_number]\",\n \"body\": \"Template body content here\"\n },\n \"signature\": \"\u003cp\u003eBest Regards,\u003c/p\u003e\u003cp\u003eCustomer Support Team\u003c/p\u003e\u003cp\u003eNationwide/ XYZ Bank\u003c/p\u003e\",\n \"is_approved\": false\n}\n```\n\n## SUCCESS MESSAGE\nEnd with: \"TEMPLATE_CREATED_SUCCESSFULLY and stored in database with ID: [template_id]\"\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that the case information is missing from your request. To properly find or create an email template, I need the actual case number and context. Let me help you understand what\u0027s needed.\n\nThe placeholders in your request (UNRESOLVED_case_number_extractor.case_number, etc.) indicate that the system hasn\u0027t properly extracted the case information. Without this data, I can\u0027t search for relevant templates or create appropriate content.\n\nTo proceed, I need:\n1. The actual case number\n2. Customer details (name and email)\n3. The nature of the customer\u0027s request\n4. Classification category\n5. Recommended template type\n\nCould you please provide the actual case number and details so I can assist you properly? Alternatively, if you\u0027d like to see how the process works with sample data, I can demonstrate that as well.\n__OUTPUTS__ {\"ai_response\": \"I notice that the case information is missing from your request. To properly find or create an email template, I need the actual case number and context. Let me help you understand what\u0027s needed.\\n\\nThe placeholders in your request (UNRESOLVED_case_number_extractor.case_number, etc.) indicate that the system hasn\u0027t properly extracted the case information. Without this data, I can\u0027t search for relevant templates or create appropriate content.\\n\\nTo proceed, I need:\\n1. The actual case number\\n2. Customer details (name and email)\\n3. The nature of the customer\u0027s request\\n4. Classification category\\n5. Recommended template type\\n\\nCould you please provide the actual case number and details so I can assist you properly? Alternatively, if you\u0027d like to see how the process works with sample data, I can demonstrate that as well.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 2561, \"completion_tokens\": 184, \"total_tokens\": 2745, \"estimated_cost\": {\"amount\": 0.08787, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 184,
"estimated_cost": {
"amount": 0.08787,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 2561,
"provider": "openrouter",
"total_tokens": 2745
}
},
"duration_seconds": 8.493494,
"end_time": "2025-08-25T06:56:40.637696",
"message_sent": true,
"start_time": "2025-08-25T06:56:32.144202",
"timestamp": "2025-08-25T06:56:40.637696",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that the case information is missing from your request. To properly find or create an email template, I need the actual case number and context. Let me help you understand what\u0027s needed.\n\nThe placeholders in your request (UNRESOLVED_case_number_extractor.case_number, etc.) indicate that the system hasn\u0027t properly extracted the case information. Without this data, I can\u0027t search for relevant templates or create appropriate content.\n\nTo proceed, I need:\n1. The actual case number\n2. Customer details (name and email)\n3. The nature of the customer\u0027s request\n4. Classification category\n5. Recommended template type\n\nCould you please provide the actual case number and details so I can assist you properly? Alternatively, if you\u0027d like to see how the process works with sample data, I can demonstrate that as well.\n__OUTPUTS__ {\"ai_response\": \"I notice that the case information is missing from your request. To properly find or create an email template, I need the actual case number and context. Let me help you understand what\u0027s needed.\\n\\nThe placeholders in your request (UNRESOLVED_case_number_extractor.case_number, etc.) indicate that the system hasn\u0027t properly extracted the case information. Without this data, I can\u0027t search for relevant templates or create appropriate content.\\n\\nTo proceed, I need:\\n1. The actual case number\\n2. Customer details (name and email)\\n3. The nature of the customer\u0027s request\\n4. Classification category\\n5. Recommended template type\\n\\nCould you please provide the actual case number and details so I can assist you properly? Alternatively, if you\u0027d like to see how the process works with sample data, I can demonstrate that as well.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 2561, \"completion_tokens\": 184, \"total_tokens\": 2745, \"estimated_cost\": {\"amount\": 0.08787, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "template_router_agent",
"token_usage": {
"completion_tokens": 184,
"estimated_cost": {
"amount": 0.08787,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 2561,
"provider": "openrouter",
"total_tokens": 2745
}
}
},
"template_router_agent": {
"agent_type": "assistant",
"ai_response": "I notice that the case information is missing from your request. To properly find or create an email template, I need the actual case number and context. Let me help you understand what\u0027s needed.\n\nThe placeholders in your request (UNRESOLVED_case_number_extractor.case_number, etc.) indicate that the system hasn\u0027t properly extracted the case information. Without this data, I can\u0027t search for relevant templates or create appropriate content.\n\nTo proceed, I need:\n1. The actual case number\n2. Customer details (name and email)\n3. The nature of the customer\u0027s request\n4. Classification category\n5. Recommended template type\n\nCould you please provide the actual case number and details so I can assist you properly? Alternatively, if you\u0027d like to see how the process works with sample data, I can demonstrate that as well.",
"execution_details": {
"actual_result": {
"agent_type": "assistant",
"execution_details": {
"agent_type": "assistant",
"input_length": 1585,
"model": "anthropic/claude-3.7-sonnet",
"output_length": 822,
"provider": "openrouter",
"system_message": "# Template Router Agent - Final Phase\n\nYou are responsible for finding or creating email templates and providing template data.\n\n## CRITICAL: USE EXTRACTED CASE NUMBER\nYou will receive the case number from the user_message.\nUse this case number consistently throughout.\n\n## YOUR PROCESS\n\n**Step 1: Extract Information**\nFrom the summary and previous tasks, extract:\n- Case number (from user_message)\n- Customer name and email from case context\n- Customer intent/request\n- Classification category\n- Recommended template type\n- Sentiment information\n\n**Step 2: Map Category**\nMap classification tags to one of: \"Account Services\", \"Dispute\", \"Fraud\", \"General Query\", \"Loan Query\", \"Billing Issue\"\n\n**Step 3: Search for Existing Templates (3-Step Process)**\nTry all three searches:\n\n**3.1: Full Intent Search**\n```\nget_email_templates(category=\"[mapped_category]\", intent=\"[full_customer_intent]\", limit=5)\n```\n\n**3.2: Simplified Intent Search (if Step 3.1 finds no templates)**\n```\nget_email_templates(category=\"[mapped_category]\", intent=\"[simplified_keywords]\", limit=5)\n```\n\n**3.3: Category Only Search (if Step 3.2 finds no templates)**\n```\nget_email_templates(category=\"[mapped_category]\", limit=5)\n```\n\n**Step 4: Evaluate Template Results**\nFor any templates found, check:\n- \u0027name\u0027 field for template description\n- \u0027intent\u0027 field for relevance match (80%+ similarity required)\n- \u0027is_approval\u0027 field (prefer approved templates)\n\n**Step 5A: If Good Template Found (80%+ similarity)**\n1. Use get_template_by_id() to retrieve full template details\n2. End with: \"EMAIL_CONTENT_UPDATED_SUCCESSFULLY using existing template ID: [template_id]\"\n\n**Step 5B: If No Good Template Found**\nCall insert_email_templates tool and then provide template data structure.\n\n**Step 6: Always Provide Template Data Structure**\nAlways end your response with this EXACT format:\n```\nTEMPLATE_DATA_FOR_EMAIL_GENERATOR:\n{\n \"template_id\": \"[UUID_from_tool_response]\",\n \"case_number\": \"[case_number]\",\n \"customer_name\": \"[Customer_Name]\",\n \"customer_email\": \"[Customer_Email]\",\n \"recommended_template\": \"[resolved/followup/rejected]\",\n \"resolved_template\": {\n \"subject\": \"Your Inquiry - Case [case_number] - Resolved\",\n \"body\": \"Template body content here\"\n },\n \"followup_template\": {\n \"subject\": \"Update on Your Inquiry - Case [case_number]\",\n \"body\": \"Template body content here\"\n },\n \"rejected_template\": {\n \"subject\": \"Regarding Your Inquiry - Case [case_number]\",\n \"body\": \"Template body content here\"\n },\n \"signature\": \"\u003cp\u003eBest Regards,\u003c/p\u003e\u003cp\u003eCustomer Support Team\u003c/p\u003e\u003cp\u003eNationwide/ XYZ Bank\u003c/p\u003e\",\n \"is_approved\": false\n}\n```\n\n## SUCCESS MESSAGE\nEnd with: \"TEMPLATE_CREATED_SUCCESSFULLY and stored in database with ID: [template_id]\"\n"
},
"input_format": "text",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that the case information is missing from your request. To properly find or create an email template, I need the actual case number and context. Let me help you understand what\u0027s needed.\n\nThe placeholders in your request (UNRESOLVED_case_number_extractor.case_number, etc.) indicate that the system hasn\u0027t properly extracted the case information. Without this data, I can\u0027t search for relevant templates or create appropriate content.\n\nTo proceed, I need:\n1. The actual case number\n2. Customer details (name and email)\n3. The nature of the customer\u0027s request\n4. Classification category\n5. Recommended template type\n\nCould you please provide the actual case number and details so I can assist you properly? Alternatively, if you\u0027d like to see how the process works with sample data, I can demonstrate that as well.\n__OUTPUTS__ {\"ai_response\": \"I notice that the case information is missing from your request. To properly find or create an email template, I need the actual case number and context. Let me help you understand what\u0027s needed.\\n\\nThe placeholders in your request (UNRESOLVED_case_number_extractor.case_number, etc.) indicate that the system hasn\u0027t properly extracted the case information. Without this data, I can\u0027t search for relevant templates or create appropriate content.\\n\\nTo proceed, I need:\\n1. The actual case number\\n2. Customer details (name and email)\\n3. The nature of the customer\u0027s request\\n4. Classification category\\n5. Recommended template type\\n\\nCould you please provide the actual case number and details so I can assist you properly? Alternatively, if you\u0027d like to see how the process works with sample data, I can demonstrate that as well.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 2561, \"completion_tokens\": 184, \"total_tokens\": 2745, \"estimated_cost\": {\"amount\": 0.08787, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"output_format": "text",
"return_code": 0,
"status": "completed",
"stderr": "",
"token_usage": {
"completion_tokens": 184,
"estimated_cost": {
"amount": 0.08787,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 2561,
"provider": "openrouter",
"total_tokens": 2745
}
},
"duration_seconds": 8.493494,
"end_time": "2025-08-25T06:56:40.637696",
"message_sent": true,
"start_time": "2025-08-25T06:56:32.144202",
"timestamp": "2025-08-25T06:56:40.637696",
"worker_executed": true,
"workers_notified": true
},
"model": "anthropic/claude-3.7-sonnet",
"model_client_id": "openrouter_claude_sonnet",
"output": "I notice that the case information is missing from your request. To properly find or create an email template, I need the actual case number and context. Let me help you understand what\u0027s needed.\n\nThe placeholders in your request (UNRESOLVED_case_number_extractor.case_number, etc.) indicate that the system hasn\u0027t properly extracted the case information. Without this data, I can\u0027t search for relevant templates or create appropriate content.\n\nTo proceed, I need:\n1. The actual case number\n2. Customer details (name and email)\n3. The nature of the customer\u0027s request\n4. Classification category\n5. Recommended template type\n\nCould you please provide the actual case number and details so I can assist you properly? Alternatively, if you\u0027d like to see how the process works with sample data, I can demonstrate that as well.\n__OUTPUTS__ {\"ai_response\": \"I notice that the case information is missing from your request. To properly find or create an email template, I need the actual case number and context. Let me help you understand what\u0027s needed.\\n\\nThe placeholders in your request (UNRESOLVED_case_number_extractor.case_number, etc.) indicate that the system hasn\u0027t properly extracted the case information. Without this data, I can\u0027t search for relevant templates or create appropriate content.\\n\\nTo proceed, I need:\\n1. The actual case number\\n2. Customer details (name and email)\\n3. The nature of the customer\u0027s request\\n4. Classification category\\n5. Recommended template type\\n\\nCould you please provide the actual case number and details so I can assist you properly? Alternatively, if you\u0027d like to see how the process works with sample data, I can demonstrate that as well.\", \"model_client_id\": \"openrouter_claude_sonnet\", \"agent_type\": \"assistant\", \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\", \"status\": \"completed\", \"token_usage\": {\"prompt_tokens\": 2561, \"completion_tokens\": 184, \"total_tokens\": 2745, \"estimated_cost\": {\"amount\": 0.08787, \"currency\": \"USD\"}, \"model\": \"anthropic/claude-3.7-sonnet\", \"provider\": \"openrouter\"}}",
"provider": "openrouter",
"return_code": 0,
"status": "completed",
"stderr": "",
"task_id": "template_router_agent",
"token_usage": {
"completion_tokens": 184,
"estimated_cost": {
"amount": 0.08787,
"currency": "USD"
},
"model": "anthropic/claude-3.7-sonnet",
"prompt_tokens": 2561,
"provider": "openrouter",
"total_tokens": 2745
}
}
}